

COMPARISON OF 901-1 AND 901-5 RECEIVERS

The 901-5 Receiver consists of a 901-1 Receiver plus an additional IF strip (30kc) and relay (K103). The IF strip has been installed so that it operates in place of the 300/20-kc bandwidth IF strip when the IF BANDWIDTH is turned to the 30 KC position. The inputs of the two IF strips are in parallel and the strip desired is selected for operation by switching the B+ supply to it.

A complete schematic diagram and modified parts list of the 901-5 Receiver are included at the end of this manual.

The functioning of the 30-kc bandwidth strip generally similar to that of the 300/20-kc bandwidth IF strip. A study of the theory of operation and maintenance of the latter will provide sufficient insight into the 30-kc bandwidth strip to permit field personnel to adequately operate and maintain the latter.

		έ¢.
	Courtesy of http://BlackRadios.terryo.org	2
DS101	LAMP: 6-8 volts, 0.15 amp, GE 47	4
DS102	Same as DS101	1
DS103	LAMP ASSEMBLY: With #345 lamp, polished chrome, Dialco 107-1930-971	1
F101	FUSE: 3/8 amp, Slo-Blo, Littelfuse	1
J101	Not Used	
J102	RECEPTACLE, JACK, BNC: p/o K101	
J103	RECEPTACLE, JACK, BNC: p/o K101	
J104	RECEPTACLE, JACK, BNC: p/o K101	
J105	RECEPTACLE, JACK, BNC: FXR UG-492A/U	2
J106	p/o J105	
J107A	RECEPTACLE, JACK, BNC, FXR UG-1094/U	4
J107B	ADAPTER, MICRODOT: Microdot 53-82	1
J108	Same as J107A	
J109	JACK, PHONE: Open-circuited, Switchcraft JJ-034	1
K101	SWITCH, COAXIAL: 26 vdc, relay operated, RF Products 317-010202-3	1
K102	RELAY: Sigma 22RJCC1000GSIL	2
K103	Same as K102	
L101	CHOKE: 6h, 60 ma, CEI 1070	1
M101	METER: 0-50 ua, dc, light gray SL-7858, Simpson MM-1	1
M102	METER: 100-0-100 ua, dc, light gray SL7858, Simpson MM-1	1
P101	POWER CORD & PLUG ASSEMBLY: Cornish 01753-001	1
P102	PLUG, CABLE, BNC: UG-88/U, FXR	8
P103	Same as P102	
P104	Same as P102	
P 105	Same as P102	
P106	Same as P102	
P107	Same as P102	
R101	RESISTOR, FIXED COMPOSITION: 4300 Ω 5%, 2W, AB, HB4325	1
R102	RESISTOR, FIXED COMPOSITION: 20000 5%, 1W, AB, GB2025	1
R103	RESISTOR, DEPOSITED CARBON: 130K 1%, 1/2W, Electra DCM1/2	1

44

x

	Courtesy of http://BlackRadios.terryo.org	
R104	RESISTOR, DEPOSITED CARBON: 2700 ohms ±1% 1/2W, Electra DCM1/2	1
R105	RESISTOR, FIXED COMPOSITION: 82 ohms ±5% 1/2W, AB EB8205	1
R106	RESISTOR, FIXED COMPOSITION: 820 ohms ±5%, 1/2W, AB EB8215	1
R107	RESISTOR, WIRE WOUND: 250 ohms ±3%, 3W, Dage CS	1
R108	RESISTOR, VARIABLE, COMPOSITION: 10K ±20%, 1W with SPDT Switch, CTS KB22141	1
R109	RESISTOR, VARIABLE, COMPOSITION: 10K ±20%, 2W, AB JA1N052P103UA	1
R110	RESISTOR, VARIABLE, COMPOSITION: 0.1 meg, ±20%, 2W AB JS1N052P104UA	1
R111	RESISTOR, FIXED COMPOSITION: 390 ohms ±5%, 1/2W, AB EB3915	1
R112	RESISTOR, VARIABLE: 500K, 1/2W AB GA1G048P504UA	1
S 101	SWITCH, TOGGLE, SPST: Cutler-Hammer 8280-K16	1
S102	SWITCH, ROTARY, NON-SHORTING: Oak 399235-A	1
S103	SWITCH, ROTARY, NON-SHORTING: Oak 399227-A	2
S104	Same as S103	
S105	SWITCH: Part of R108, not separately replaceable	
S106	SWITCH, TOGGLE, SPDT: Cutler-Hammer 8282-K14	1
T101	TRANSFORMER, POWER: CEI 1085	1
TB101	TERMINAL STRIP: Cinch-Jones 3-140-Y	1
TB102	Same as TB101	
2.	VIDEO MODULE	
C201	CAPACITOR, ELECTROLYTIC, TANTALUM: 0.47 µf ±20%, 35 wvdc Sprague 150D474X0035A2	3
C202	CAPACITOR, DIPPED MICA: 68 µuf ±5%, Arco DM10-680J	3
C203	CAPACITOR, ELECTROLYTIC, TANTALUM: 22 µf ±20%, 35 vdc Sprague 150D22 6X0035R0	1
C204	Same as C107	
CR 201	DIODE, ZENER: 1N759A, PSI	2
Q201	TRANSISTOR: 2N335, Texas Instrument	6
Q202	Same as Q201	

C674	Same as C415 ^{Courtesy of http://BlackRadios.terryo.org}		
C675	Same as C666	o.	
C676	Same as C667		
C677	Same as C667		
CR601	DIODE, SILICON ZENER: P.S.I. 1N751A		2
CR602	DIODE, GERMANIUM: Sylvania 1N198A		2
CR603	Same as CR602		
CR604	Same as CR601		
E601	FEEDTHRU, TERMINAL: Taurus SFU-16		2
E602	Same as E601		
FB601	Same as FB401		
J601	Same as J402		
J602	Same as J402		
K601	RELAY: DPDT, Elgin MS24250-6		2
K602	Same as K601		
L601 L602	Part of T601, not separately replaceable		
L603	COIL, VARIABLE: CEI 1111-04		1
L604	COIL, VARIABLE: CEI 1111-05		1
L605	COIL, VARIABLE: CEI 1111-06		1
L606	COIL, VARIABLE: CEI 1111-03		1
L607	COIL, VARIABLE: CEI 1111-01		1
L608	COIL, VARIABLE: CEI 1111-07		1
L609	COIL, FIXED: 43 uh, CEI 1131-17		2
L610	COIL, VARIABLE: CEI 1111-02		1
L611	COIL, VARIABLE: CEI 1109		1
L612	Same as L609		
L613	Same as L513		
L614	COIL, FIXED: CEI 1131-11		1
L615	COIL, FIXED: CEI 1131-19		1

1

4

2

1

1

1

2

4

1

2

1

1

- 8. 30KC IF STRIP
- C801 CAPACITOR, CERAMIC DISC: 1000pf 20%, RMC, Type SM
- C802 Same as C801
- C803 Same as C801
- C804 Same as C801
- C805 CAPACITOR, CERAMIC STANDOFF: 1000pf, GMV, AB, SS5A102W
- C806 CAPACITOR, CERAMIC TUBULAR: 4.3pf 0.25pf, Erie, NPOA C807 CAPACITOR, CERAMIC TUBULAR: 0.1pf 10%, QC, Type QC
- C808 Same as C806
- C809 CAPACITOR, CERAMIC TUBULAR: 0.27pf 10%, QC, Type QC
- C810 CAPACITOR, DIPPED MICA: 33pf 5%, Arco, DM10-330J
- C811 Same as C801
- C812 CAPACITOR, DIPPED MICA: 22pf 5%, Arco, DM10220J
- C813 Same as C812
- C814 Same as C805
- C815 Same as C801
- C816 Same as C801
- C817 CAPACITOR, DIPPED MICA: 180pf 5%, Arco, DM10-181J
- C818 CAPACITOR, DIPPED MICA: 30pf 5%, Arco, DM10-300J
- C819 CAPACITOR, CERAMIC TUBULAR: 6.2pf 0.5pf, Erie NPOA
- C820 Same as C817
- C821 CAPACITOR, DIPPED MICA: 270pf 5%, Arco, DM10-2715
- C822 Same as C801
- C823 Same as C805
- C824 Same as C801
- C25 CAPACITOR, DIPPED MICA: 39pf 5%, Arco, DM10-390J
- C826 Same as C817
- C827 Same as C801
- C828 Same as C801
- C829 Same as C817

59a

	Courtesy of http://BlackRadios.terryo.org	č., .
C830	CAPACITOR, DIPPED MICA: 68pf 5%, Arco, DM10-680J	1
C831	CAPACITOR, DIPPED MICA: 360pf 5%, Arco, DM10-361J	<u>'</u> 4
C832	Same as C831	
C833	Same as C831	
C834	Same as C805	
C835	Same as C831	
C836	CAPACITOR, CERAMIC DISC: 1.0µf 20%, 35V, Sprague, 150D105X0035A2	1
C837	CAPACITOR, CERAMIC FEEDTHRU: 1000pf, GMV, AB, FA5C-102	8
C838	Same as C837	
C839	Same as C837	
C840	Same as C837	
C841	Same as C837	
C842	Same as C837	
C843	Same as C837	
C844	Same as C837	
C845	CAPACITOR, CERAMIC TUBULAR: 8.2pf 0.5pf, Erie, NPOA	1
C846	Same as C819	
C847	Same as C801	
C848	Same as C831	
J801	CONNECTOR JACK: FXR, 27-3	2
J802	Same as J801	
L801	INDUCTOR, VARIABLE: CEI, 1472-4	2
L802	Same as L801	
L803	INDUCTOR, VARIABLE: CEI, 1032-2	1
L804	INDUCTOR, VARIABLE: CEI, 1034-3	1
L805	INDUCTOR, VARIABLE: CEI, 1472-10	1
L806	INDUCTOR, FIXED: 1.0mh, Wilco, 11000-15	1
L807	INDUCTOR, VARIABLE: CTC, 2060-8	1
L808	INDUCTOR, VARIABLE: CEI, 1041-2	1
P801	CONNECTOR, PLUG: FXR 27-1	2
P802 '	Same as P801	
R801	RESISTOR, FIXED COMPOSITION: 220K 5%, 1/4W, AB, CB2245	2
R802	RESISTOR, FIXED COMPOSITION: 100K 5%, 1/4W, AB, CB1045	5

59b

]	R803	RESISTOR, FOUTESTORING HIP: HEAR RADIOS, TETMONORGAB, CB1025	3
]	R804	RESISTOR, FIXED COMPOSITION: 1 meg 5%, 1/4W, AB, CB1055	2
]	R805	Same as R803	
]	R806	Same as R802	
]	R807	RESISTOR, FIXED COMPOSITION: 56K 5%, 1/4W, AB, CB5635	1
]	R808	RESISTOR, FIXED COMPOSITION: 22K 5%, 1/4W, AB, CB2235	1
]	R809	Same as R804	
]	R810	RESISTOR, FIXED COMPOSITION: 10K 5%, 1/4W, AB, CB1035	2
]	R811	Not used	
]	R812	RESISTOR, FIXED COMPOSITION: 820K 5%, 1/4W, AB, CB8245	1
]	R813	Same as R802	
I	R814	Same as R803	
I	R815	Same as R810	
I	R816	RESISTOR, FIXED COMPOSITION: $56\Omega 5\%$, $1/4W$, AB, CB5605	1
I	R817	Same as R802	
I	R818	RESISTOR, FIXED COMPOSITION: 4.7K 5%, 1/4W, AB, CB4725	1
H	R819	Same as R801	
I	R820	RESISTOR, FIXED COMPOSITION: 150K 5%, 1/4W, AB, CB1545	2
H	R821	RESISTOR, FIXED COMPOSITION: 75K 5%, 1/4W, AB, CB7535	1
I	R822	Same as R802	
I	R823	RESISTOR, FIXED COMPOSITION: 36K 5%, 1/4W, AB, CB3635	1
I	R824	RESISTOR, FIXED COMPOSITION: 18K 5%, 1/4W, AB, CB1835	1
ł	R825	RESISTOR, FIXED COMPOSITION: 430K 5%, 1/4W, AB, CB4345	1
I	R826	Same as R820	
I	R827	RESISTOR, FIXED COMPOSITION: 1.5meg, 5%, 1/4W, AB, CB1555	1
I	R828	RESISTOR, FIXED COMPOSITION: 750K 5%, 1/4W, AB, CB7545	1
I	R829	Same as R818	
-	Г801	TRANSFORMER: CEI, 1126	1
٦	V801	TUBE, ELECTRON: RCA, 7587	4
1	V802	Same as V801	
1	V803	Same as V801	
1	v804	Same as V801	
1	V805	TUBE, ELECTRON: RCA, 6CW4	1
1	Y801	CRYSTAL: 20.400MC, Piezo, 4202	1

INSTRUCTION BOOK FOR TYPE 901-1 RECEIVER

С

WATKINS—JOHNSON COMPANY 700 Quince Orchard Road Gaithersburg, Maryland 20760 C.

WARNING

This equipment employs voltages which are dangerous and may be fatal if contacted. Extreme caution should be exercised in working with the equipment with any of the protective covers removed.

NOTICE

This instruction book for the Type 901-1 Receiver has been made by ammending an instruction book for the Type 901 Receiver as follows:

1. The page immediately following this contains a discussion of the carrier-operated relay (COR) circuit and the differences between a 901 receiver and a 901-1 receiver.

2. Section VI has been changed to include all of the 901-1 components.

3. A complete schematic diagram of the 901-1 receiver is included.

CARRIER OPERATED RELAY

Except for the operating controls and the relay, K102, the carrier operated relay circuit is contained on an etched circuit board mounted plug-in fashion on the main chassis. The circuit consists of a two-stage DC amplifier, relay driver, release time delay, and relay. A sensitivity control is provided to permit selection of the signal level at which the relay operates. A selection of slow (6 seconds) or fast release time is provided by a front panel switch. The COR circuit derives its input from the current flowing in the signal strength meter in the receiver and is therefore connected in series from the meter to ground. In order not to affect the signal strength meter calibrations, the input voltage drop of the COR is held to less than 0.5 volt through the use of diode clamps. The COR circuit will function with inputs of zero to 40 microamperes and provide a pull-in to drop out differential sensitivity of less than two microamperes over the entire range. Since the signal strenth meter calibrations are approximately logarithmic, this method of COR operation provides uniform sensitivity for inputs from zero to 80% of the maximum receiver RF input.

ELECTRICAL CHARACTERISTICS

Input Current Range. . . . O to 40 microamperes, DC Input Voltage Drop . . . 0.5 V, approximately Differential Sensitivity . 2 microamperes, maximum Release Time Delay . . . Fast - Less than 0.5 sec. Slow - 6 sec. Output DPDT contacts Contact Rating 2 amperes at 28 VDC or 120 VAC

As shown in the shcematic diagram the COR is in the unactuated state, i.e., the state in the absence of a carrier.

The following differences exist between a 901 receiver and a 901-1 receiver:

1. The 901-1 has its power switch incorporated with the AUDIO GAIN control.

2. The 901-1 front panel mounts three additional items: a COR light, a COR DELAY control, and a COR SENSITIVITY control.

3. The 901-1 chassis rear apron contains a second terminal board, TB102, on which the three output terminals from the COR appear.

TABLE OF CONTENTS

Subsection

1.

0

Page

SECTION I

SPECIFICATIONS

	Specifications	,												•		•	•						•	•	•			•						.*			×		1
--	----------------	---	--	--	--	--	--	--	--	--	--	--	--	---	--	---	---	--	--	--	--	--	---	---	---	--	--	---	--	--	--	--	--	----	--	--	---	--	---

SECTION II

GENERAL DESCRIPTION

1.	Electrical Characteristics	5
2.	Mechanical Characteristics	5
3.	Equipment Supplied	5
4.	Additional Equipment Required for Operation	6

SECTION III

CIRCUIT DESCRIPTION

1.	Func	tional Analysis
2.	Input	
3.	Low	Band Tuner, 30-60 MC 10
	Α.	RF Amplifier
	Β.	Local Oscillator
	C.	Mixer 11
4.	High	Band Tuner, 60-300 MC
	Α.	RF Amplifier 11
	Β.	Local Oscillator
	С.	Mixer
5.	IF St	rip
	Α.	Input
	В.	First and Second IF Amplifiers 12
	с.	AM Third IF Amplifier/FM First Limiter 13
	D.	AM Detector/FM Second Limiter
	E.	FM Demodulator
	F.	Beat Frequency Oscillator
	G.	BFO Buffer - Doubler

Н.	DC Amplifier
Ι.	Video Amplifier
J.	Audio Amplifier
К.	Power Supply

SECTION IV

INSTALLATION AND OPERATION

1.

2.

Instal	llation
Α.	Mounting
Β.	Power Connections
С.	Single Antenna Operation
D.	Two-Antenna Operation
E.	Signal Monitor Connection
F.	Video Output Connection
G.	Audio Output Connection
Н.	Ground Connection
Opera	ation

SECTION V

MAINTENANCE

1.	Gene	eral	ŀ
2.	Mair	ntenance of Gear Trains and Tuning Dials	ł
3.	Plug	-In Modules	ŀ
4.	Print	ted Circuit Component Replacement	ł
5.	Trou	ubleshooting	
6.	Alig	nment Instructions	
	Α.	General	
	Β.	Equipments Required	
7.	IF St	trip Alignment Procedures	
	Α.	General	
	Β.	Initial Settings	1
	C.	First to Second IF Amplifier, V601 to V602, Interstage Alignment, 20-kc Bandwidth	
	D.	First to Second IF Amplifier, V601 to V602, Interstage Alignment, 300-kc Bandwidth	5

L

Γ

E.	Second IF Amplifier to Third IF Amplifier/First Limiter, V602 to V603, Interstage Alignment	34
F.	Third IF Amplifier/First Limiter to AM Detector/FM Second Limiter, V603 to V604, Interstage Alignment	35
G.	Discriminator Alignment	35
Η.	BFO, V606, Alignment	37
Low	Band RF Tuner Alignment Procedures	37
Α.	General	37
Β.	Initial Settings	37
С.	Low Band Mixer, V403, Plate Coil, L405, Alignment	37
D.	Low Band Local Oscillator, V404, Alignment	37
E.	Low Band RF Amplifier to Mixer, V402 to V403, Interstage Alignment	38
F.	Low Band RF Tuner Input Circuit Alignment	39
High	Band RF Tuner Alignment Procedures	4 0
Α.	General	40
Β.	Initial Settings	4 0
C.	High Band Local Oscillator, V504, Alignment	4 0
D.	High Band RF Amplifier to Mixer, V502 to V503, Interstage Alignment	4 0
E.	High Band RF Tuner Input Circuit Alignment	42

SECTION VI

PARTS LIST

1.	Main Chassis
2.	Video Module
3.	Audio Module
4.	Low Band Tuner, 30-60 mc
5.	High Band Tuner, 60-300 mc
6.	IF Strip
7.	List of Manufacturers

Figure

P

LIST OF ILLUSTRATIONS

1-1	Type 901 Receiver, Noise Figure vs Frequency	L
1-2	Type 901 Receiver, Image Rejection vs Frequency	L
1-3	Type 901 Receiver, IF Rejection vs Frequency	2
1-4	Type 901 Receiver, Oscillator to Antenna Conduction vs Frequency 2	2

8.

9.

1

v

2 - 1	Type 901 Receiver	4
2-2	Type 901 Receiver, Rear View	7
3-1	Type 901 Receiver, Functional Block Diagram	8
5-1	Type 901 Receiver, Chassis Top	20
5-2	Type 901 Receiver, Chassis Bottom	21
5-3	Type 901 Receiver, IF Strip, Capacitor Location	22
5-4	Type 901 Receiver, IF Strip, Resistor and Inductor Location	23
5-5	Type 901 Receiver, Low Band Tuner, Capacitor Location	24
5-6	Type 901 Receiver, Low Band Tuner, Resistor and Inductor Location	25
5-7	Type 901 Receiver, High Band Tuner, Capacitor Location	26
5-8	Type 901 Receiver, High Band Tuner, Resistor and Inductor Location	27
5-9	Type 901 Receiver, Audio Module, Video Module, and Component Board	28
5-10	Printed Circuit Board Component Replacement	30
5-11	Type 901 Receiver, Equipment Setup V601 to V602 Interstage Alignment, 20-kc Bandwidth	32
5-12	Type 901 Receiver, Typical Response Curve, V601 to V602 Interstage Alignment, 20-kc Bandwidth	33
5-13	Type 901 Receiver, Equipment Setup, V601 to V602 Interstage Alignment, 300-kc Bandwidth	34
5-14	Type 901 Receiver, Typical Response Curve, V601 to V602 Interstage Alignment, 300-kc Bandwidth	34
5-15	Type 901 Receiver, Typical Response Curve, V602 to V603 Interstage Alignment	35
5-16	Type 901 Receiver, Typical Response Curve, V603 to V604 Interstage Alignment	36
5-17	Type 901 Receiver, Typical Response Curve, Discriminator Alignment	36
5-18	Type 901 Receiver, Equipment Setup, V402 to V403 Interstage Alignment	38
5-19	Type 901 Receiver, Equipment Setup, V502 to V503 Interstage Alignment	41
5-20	Type 901 Receiver, Typical Response Curve, V502 to V503 Interstage Alignment, Receiver Dial at 290 mc, Bottom Cover On	41
5-21	Type 901 Receiver, Typical Response Curve, V502 to V503 Interstage Alignment, Receiver Dial at 100 mc, Bottom Cover On	42
6-1	Type 901 Receiver, Schematic Diagram	63
Table	LIST OF TABLES	
1	Tube, Transistor, and Diode Complement, Type 901 Receiver	vii

29

Tube Socket and Module Pin Voltages, Type 901 Receiver. . . .

2

D

TABLE 1

TUBE, TRANSISTOR, AND DIODE COMPLEMENT, TYPE 901 RECEIVER

Symbol	Туре	Function
V401	6CW4	lst RF Amplifier, 30-60 mc Tuner
V402	6CW4	2nd RF Amplifier, 30-60 mc Tuner
V403	7587	Mixer, 30-60 mc Tuner
V404	6CW4	Local Oscillator, 30-60 mc Tuner
V501	7077	lst RF Amplifier, 60-300 mc Tuner
V502	7077	2nd RF Amplifier, 60-300 mc Tuner
V503	7587	Mixer, 60-300 mc Tuner
V504	6CW4	Local Oscillator, 60-300 mc Tuner
V601	7587	lst IF Amplifier
V602	7587	2nd IF Amplifier
V603	7587	AM: 3rd IF Amplifier; FM: 1st Limiter
V604	7587	AM: Detector; FM: 2nd Limiter
V605	6CW4	BFO Buffer Amplifier
V6 06	6CW4	BFO
Q201 Q202	2N333	DC Amplifier
Q203 Q204	2N333	Video Amplifier
Q301 Q302	2N333	Audio Amplifier
Q303	2N1700	Audio Output Amplifier
CR 101 thru CR 104	1N2615	Rectifier
CR 105 thru CR 110	1N2610	Rectifier
CR 20 1 CR 30 1	1N759A	Voltage Regulator
CR601 CR604	1M756A	Gain Control Voltage Delay
CR602 CR603	1N198A	FM Demodulator

vii

SECTION I

SPECIFICATIONS

Type of Reception

Frequency Range

Inputs

Input Impedance

Noise Figure

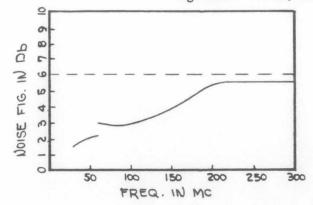
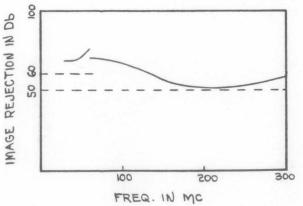
AM-FM-CW

30-300 mc in two bands Low band: 30-60 mc High band: 60-300 mc

Two BNC type connectors, one with coaxial switch, permitting operation across full frequency range with single antenna or operation with separate antennas for each band

Suitable for 50-ohm source

Low band: 4 db, maximum High band: 6.5 db, maximum

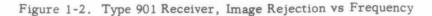

Figure 1-1. Type 901 Receiver, Noise Figure vs Frequency

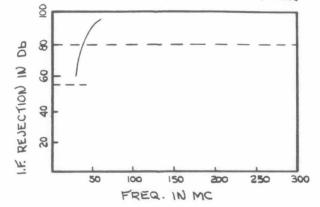
Image Rejection

Low band: 60 db, minimum High band: 50 db, minimum

1

IF Frequency

IF Bandwidths


IF Rejection

21.4 mc

300 kc or 20 kc, selectable from front panel

Low band: Above 40 mc, 75 db minimum Below 40 mc, 54 db minimum High band: Greater than 100 db

Oscillator to Antenna Conduction

Low band: 15 microvolts, maximum High band: Below 260 mc, 15 microvolts maximum Above 260 mc, 25 microvolts maximum

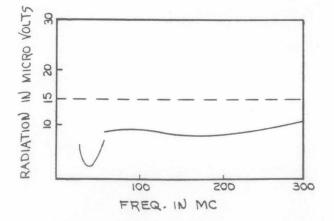


Figure 1-4 Type 901 Receiver, Oscillator to Antenna Conduction vs Frequency

Sensitivity	AM: 4 uv input, modulated 50%, produces 11-db $\frac{S+N}{N}$, minimum
300-kc Bandwidth	FM: 4 uv input, modulated at 1 kc with 100-kc deviation, produces 21-db $\frac{S+N}{N}$, minimum
20-kc Bandwidth	AM: 2 uv input, modulated 50%, produces 17-db $\frac{S+N}{N}$, minimum
	FM: 2 uv input, modulated at 1 kc with 7-kc deviation, produces 20-db $\frac{S+N}{N}$, minimum
Audio Output Power	100 milliwatts, minimum, into 600-ohm load, balanced or unbalanced, using either headphones jack or speaker connection terminals
Audio Response	100 cps to 40 kc at 3-db points
Video Output	5 volts, rms, across a 10K-ohm, unbalanced load
Video Response	50 cps to 500 kc at 3-db points (300-kc IF Bandwidth, FM)
Signal Monitor Output	21.4-mc center frequency IF signal output, for use with CEI signal monitors
	FM: Output varies less than 2 db for inputs above 1.5 uv
Output Stability with AGC	AM: Output varies less than 15 db for input range of 2-10,000 uv
BFO	21.4-mc center frequency, variable \pm 20 kc, for use with both bandwidths
Power Input	115 vac, 50-400 cps
Power Consumption	40 watts, maximum
Weight	18.5 pounds
Size	19" x 3 1/2" x 15 1/2"

3

6.0

@ >

FIGURE 2-1. TYPE 901 RECEIVER

SECTION II

GENERAL DESCRIPTION

1. ELECTRICAL CHARACTERISTICS.

The CEI Type 901 Receiver is an FM-AM-CW superheterodyne receiver covering the frequency range 30 to 300 mc in two bands, 30-60 mc and 60-300 mc. The receiver uses single conversion to a 21.4-mc IF. The IF bandwidth can be set to either 20 kc or 300 kc. The input impedance is suitable for a 50-ohm source. The audio output impedance is 600 ohms. The video output impedance is suitable for a 10K-ohm, unbalanced load.

2. MECHANICAL CHARACTERISTICS.

The front panel (see fig. 2-1) mounts the following: the BANDWIDTH switch with positions marked 300 KC and 20 KC; the TUNING meter; the mode selector, a switch with three positions, marked FM, AM, and CW; the low band tuning dial, illuminated, recessed behind a window, inscribed with a mark for each 500 kc from 30 mc to 62 mc, and controlled by means of a tuning crank so that 40 turns are required to cross the band; the band selector, a switch with two positions, marked 30-60 MC and 60-300 MC; the high band tuning dial, illuminated, recessed behind a window, inscribed with a mark for each megacycle from 60 mc to 300 mc, and controlled by means of a tuning crank so that 47 turns are required to cross the band; the SIGNAL STRENGTH meter; the PHONES jack; the BFO TUNING control; the VIDEO GAIN control; the AUDIO GAIN control; the IF GAIN control, with an AGC position; and the POWER switch.

The chassis rear apron (see fig. 2-2) mounts the following: a fuse marked F 101 3/8 AMP SLOW-BLOW; a type BNC connector marked J102 INPUT; a type BNC connector marked J105 AUX INPUT; a type BNC connector marked J107 SM OUTPUT; a type BNC connector marked J108 VIDEO OUTPUT; and a three-terminal barrier strip marked TB101 AUDIO OUTPUT with the terminals marked respectively G, 1, and 2. The power cord is permanently connected through the rear of the receiver.

The panel and main chassis are constructed of aluminum. The main chassis top and bottom are covered with aluminum dust covers. The panel is overlaid with a black-anodized etched plate. Within the main chassis are three separate subassemblies: the 30-60 mc RF tuner; the 60-300 mc RF tuner; and the IF strip. Mounted plug-in fashion on the chassis top are two transistorized modules: the audio amplifier module and the video module. Those small parts not included in the subassemblies or modules are mounted on a component board located on the chassis underside.

The receiver is designed for mounting in a standard 19-inch rack. It measures 3-1/2" high, 19" wide, and 15-1/2" deep (front panel to rearmost projection). There are handles on both the front panel and the chassis rear apron. Provision for Grant slides has been made by the inclusion of three captive floating bolts spaced along the side aprons plus a hole in both the left and right extension of the front panel through which the Grant slide release bars can project. The weight is 18.5 pounds.

3. EQUIPMENT SUPPLIED.

The 901 receiver is shipped complete with power cord, a mating connector for each input and output receptacle, and a three-pin to two-pin power cord plug adapter.

4. ADDITIONAL EQUIPMENT REQUIRED FOR OPERATION.

To use the audio output, either a set of headphones or a speaker is necessary. To use the signal monitor output, a CEI type signal monitor is needed.

D

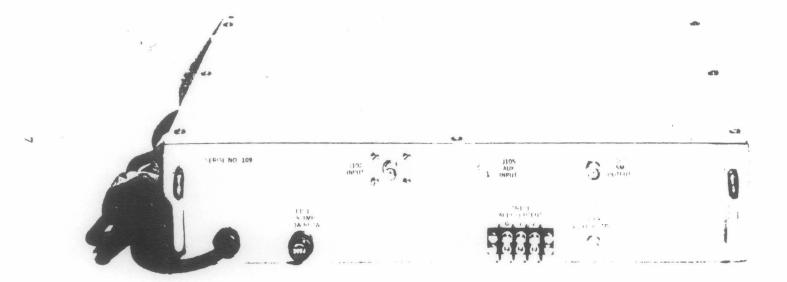
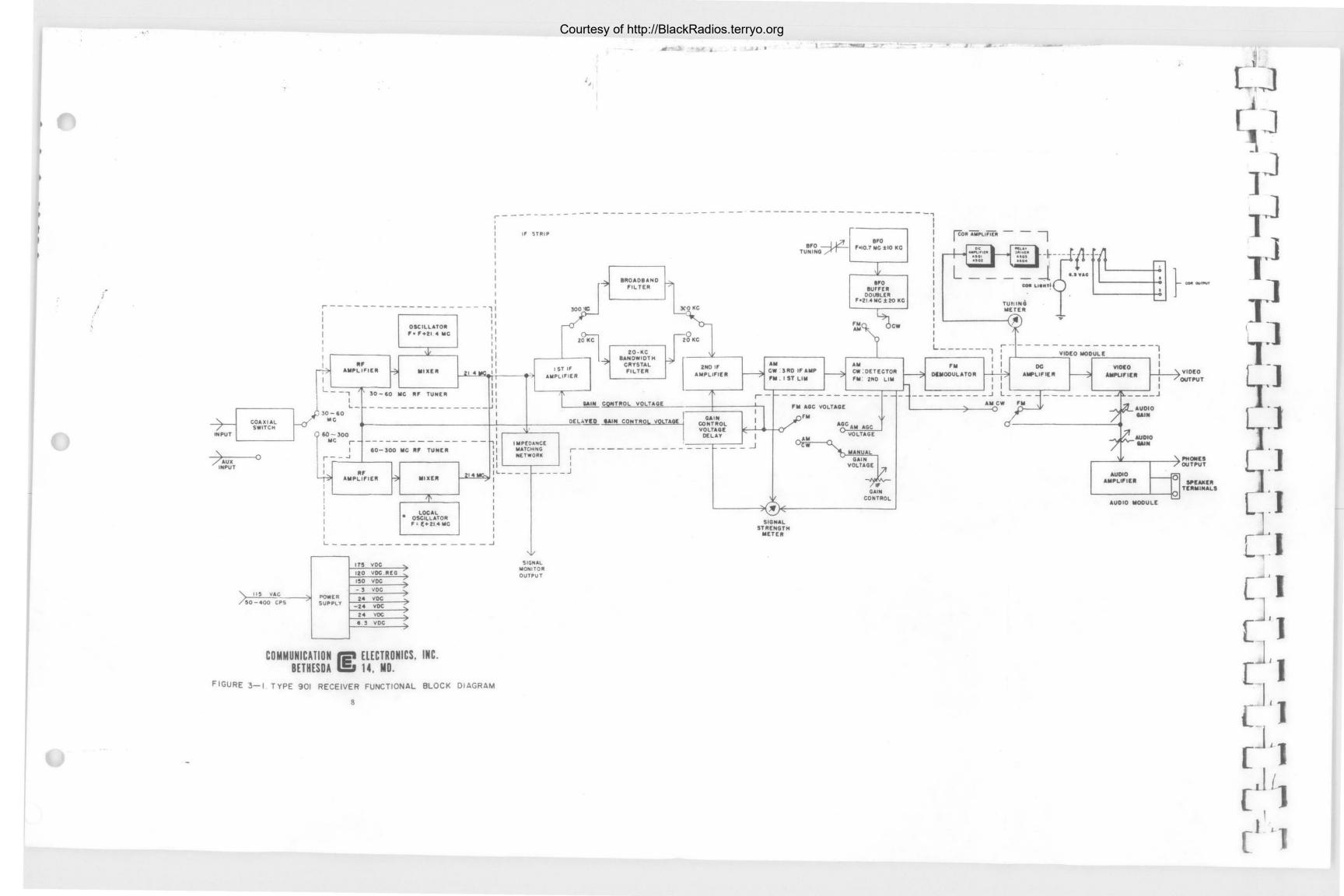



FIGURE 2-2. TYPE 901 RECEIVER, REAR VIEW

SECTION III

CIRCUIT DESCRIPTION

1. FUNCTIONAL ANALYSIS.

LI

1

The Type 901 Receiver (depicted by functional block diagram in fig. 3-1) tunes the frequency range 30-300 mc in two bands, 30-60 mc and 60-300 mc. Either a 300-kc or a 20-kc IF bandwidth is available, and four outputs are present: a signal monitor output providing a 21.4-mc IF signal, a video signal output, and two audio outputs, one a headphones jack and the other terminals for a speaker.

When only one antenna is used, it is connected to the INPUT connector, and the coaxial switch automatically switches the antenna to the RF tuner of the frequency band in use. To use separate antennas for each frequency, the AUX. INPUT can be used to connect one antenna directly to the low band RF tuner, while the second antenna reaches the other tuner through the coaxial switch. (See Section IV, Installation and Operation for use of the antenna inputs.)

The receiver contains two RF tuners, one for the 30-60 mc band and one for the 60-300 mc band. Each tuner contains an RF amplifier, a local oscillator, and a mixer. Each local oscillator is operated at a frequency 21.4 mc above the carrier being received. Thus the output from either mixer is a 21.4-mc IF signal. A portion of the 21.4-mc IF signal is applied through an impedance-matching network to the signal monitor output. The remainder of the IF signal is applied to the IF strip.

The first stage of the IF strip is the first IF amplifier. From there the signal is coupled to the second IF amplifier through either one or the other of two different paths. During operation when the 300-kc IF bandwidth has been selected, the connection to the second IF amplifier is through a broad-band filter. During operation when the 20-kc bandwidth has been selected, the connection to the second IF amplifier is through a 20-kc bandwidth crystal filter. Thus, selectable bandwidth is obtained.

From the second IF amplifier the signal is further coupled through a series of two stages. The functions of these two stages change according to the mode of receiver operation. In the AM or CW mode the two stages following the second IF amplifier operate as a third IF amplifier and detector, respectively. In the FM mode the same two stages operate as a first and second limiter, respectively, and the signal from the second limiter is applied successively to an FM demodulator and a dc amplifier.

In the AM and CW modes the demodulated signal is taken from the stage functioning as detector and simultaneously applied through the VIDEO GAIN control to the video amplifier and, through the AUDIO GAIN control, to the audio amplifier. In the FM mode the demodulated signal, coming through the dc amplifier, is applied in the same manner to the video amplifier and the audio amplifier. The video amplifier terminates in the VIDEO OUTPUT; the audio amplifier terminates in the PHONES jack and speaker terminals.

Operation in the CW mode is obtained by applying the output of the BFO buffer-doubler stage to the stage functioning as detector. The BFO TUNING control varies the BFO frequency approximately ± 20 kc.

The gain control circuit makes use of either an AGC voltage or a manual gain control voltage. It applies a gain control voltage simultaneously to the RF amplifiers and to the first and second IF amplifiers. To the first IF amplifier the gain control voltage is applied directly. But to the RF

amplifiers and the second IF amplifier it is applied only after being subjected to a delay. In the FM mode, only AGC is possible, and the AGC voltage is obtained from the stage functioning as the first limiter. In the AM mode with AGC, an AGC voltage is derived from the stage functioning as a detector. AGC should not be used in the CW mode (see Section IV, Installation and Operation). When manual gain control is used (which can be in either the AM or CW mode) the gain control voltage is derived from a fixed bias supply and applied through the IF GAIN control.

The SIGNAL STRENGTH meter receives operating voltage from three sources: the gain voltage delay circuit, the detector/second limiter stage, and the third IF amplifier/first limiter stage. The TUNING meter is operated by the dc amplifier, whose output is proportional to the deviation of the IF from its center frequency of 21.4 mc.

The power supply operates on 115 vac, 50-400 cps, and provides the eight voltages required for the receiver. These are: 175 vdc; 120 vdc, regulated; 150 vdc; -3 vdc; -24 vdc; two sources of 24 vdc; and 6.3 vac.

2. INPUT.

The receiver INPUT, J102, is connected to the coaxial switch, K101, which has two outputs. Normally, each RF tuner input is coupled to one of the coaxial switch outputs, allowing the use of a single antenna which is automatically switched to the RF tuner of the band in operation. The coaxial switch has a built-in 24-vdc relay and is actuated by a 24-vdc source when the bandswitch is in the 60-300 mc position. In the unactuated position it connects the INPUT to the 30-60 mc tuner.

If separate antennas are desired for each frequency band, the connection from the input to one of the tuners can be transferred from the coaxial relay to the AUX. INPUT (see Section IV, Installation and Operation). Then the AUX. INPUT is used for one antenna and the INPUT is used for the other.

3. LOW BAND TUNER, 30-60 MC.

A. <u>RF Amplifier</u>. The low band tuner RF amplifier consists of two type 6CW4 Nuvistor triodes, V401 and V402, in cascode amplifier configuration. In the low band tuner, the input circuit provides an impedance as seen by the first tube of a value which is near the optimum required for low noise figure operation.

Input tuning is accomplished by inductor L402A, one section of a four-section Mallory inductuner, in the grid circuit of V401. Output tuning is accomplished by inductor L402B, another inductuner section, in the plate circuit of V402.

Neutralization is achieved by feeding a small out-of-phase signal from the plate to the grid of V401 through broadband transformer T401. To extend the dynamic range of the receiver, the RF amplifier signal handling capability is improved by applying a delayed gain control voltage derived in the IF strip (see subsection 4 of this section). The delay of the gain control voltage is accomplished by Zener diode CR601 (in the IF strip). Delaying the gain control voltage to the RF amplifier permits the IF signal to reach a suitable level before RF amplification is reduced. To the low band tuner RF amplifier, the gain control voltage is tapped from a voltage divider composed of R404 and R417.

The low band tuner RF amplifier is placed in operation by means of bandswitch section S102A. It applies B+ voltage to the V402 plate when the bandswitch is rotated to the 30-60 MC section.

B. Local Oscillator. The low band tuner local oscillator is a type 6CW4 Nuvistor triode, V404, operated in a Colpitts configuration with the plate at RF ground. The tank circuit is tuned by inductor L402D, a section of the inductuner. The frequency of operation is maintained 21.4 mc above the carrier. To minimize drift due to variations in filament or plate voltage, the oscillator tube itself is appropriately decoupled from the main tank circuit by capacitor C421.

The low band local oscillator is placed in operation by bandswitch section S102A. It applies B+ voltage to the stage when the bandswitch is rotated to the 30-60 mc position.

C. Mixer. The low band tuner mixer, V403, is a type 7587 Nuvistor tetrode with its input circuit tuned by inductuner section L402C. Both the signal from the RF amplifier and the output of the local oscillator are applied to its grid, and the two signals are mixed to produce a 21.4-mc IF. Test point TP401, decoupled from the grid, can be used to check oscillator injection and also to check RF tuning by means of an oscilloscope.

To obtain uniform bandwidth through the tuning range, two means of coupling are used from the RF amplifier to the mixer. One means is capacitive coupling through C410. The other is by the mutual coupling of L402B and L402C.

The mixer output is a plate circuit pi-network consisting of inductor L405 and capacitors C416 and C417. This network is tuned to the IF frequency, 21.4 mc, and is so designed that, at the tuner output, J403, the plate impedance of V403 is transformed down to approximately 50 ohms. When J403 is connected to a 50-ohm load, the IF has a single-tuned response with a bandwidth of one megacycle at the 3-db points.

The operating voltage to the low band mixer screen grid, like that to the RF amplifier, is switched off when the band is not in use.

4. HIGH BAND TUNER, 60-300 MC.

A. <u>RF Amplifier</u>. The high band tuner RF amplifier consists of two type 7077 ceramic triodes, V501 and V502, connected in a cascode configuration. The impedance as seen by the first tube is of a value near the optimum required for low noise figure operation. Input tuning is by means of inductor L502A, part of a four-section Mallory Inductuner in the grid circuit of V501. RF amplifier output tuning is by means of inductuner section L502B in the V502 plate circuit.

To achieve a low noise figure and high stability, neutralization is used. This is in the form of a capacitive bridge, with capacitor C507 as one arm and the combination of C504 and C505 as another arm, those two arms balancing the grid-to-plate capacitance and the input capacitance of V501.

To extend the receiver's dynamic range, gain control is applied to the high band RF amplifier by means of the same gain control voltage applied to the low band RF amplifier (see subsection 3, paragraph A, of this section). But compared to the low band RF amplifier, there is a difference. The gain control voltage to the high band RF amplifier is not passed through a voltage divider.

The cathodes of V501 and V502 return to -3 vdc through a 620-ohm dropping resistor, R504 for the V501 cathode and R505 for the V502 cathode. This design provides dc degeneration which normalizes the effect of tube variations. Such degeneration also causes the tubes to function with a more remote cutoff, and such cutoff makes it possible to apply full gain control voltage to the high band RF amplifier, rather than through a voltage divider.

The high band tuner RF amplifier is placed in operation by bandswitch section S102A. It applies B+ to the V501 plate when the bandswitch is rotated to the 60-300 MC position.

B. Local Oscillator. The high band tuner local oscillator, V504, is a type 6CW4 Nuvistor triode operated in a balanced Colpitts configuration. It is tuned by L502D, a section of the inductuner and is maintained at a frequency 21.4 mc above that of the RF carrier. Capacitors C524 and C525 of the tank circuit have a negative temperature coefficient to compensate for frequency drift due to ambient temperature change. Oscillator energy is taken from the grid side of the tank circuit through capacitor C520. To reduce radiation at the antenna from this oscillator, a small portion of the oscillator signal is fed back, in phase opposition, through capacitors C111 and C112, to the plate of V502. This feedback tends to cancel the oscillator energy which is coupled to the antenna through the tuned circuits.

C. <u>Mixer</u>. The high band tuner mixer, V503, is a type 7587 Nuvistor tetrode. Both the signal from the RF amplifier and the output of the local oscillator are applied to its grid, and the two signals are mixed to produce a 21.4-mc IF. Test point TP501, decoupled from the grid, can be used to check oscillator injection and also to check RF tuning by means of an oscilloscope.

The output circuit of the RF amplifier second stage and the mixer grid circuit form a tuned, two-section, bandpass filter in which a T-network serves as the coupling device. The T-network series arms are capacitors C513 and C514. The shunt arm consists of inductor L508 in parallel with the series combination of inductor L507 and variable capacitor C515. The shunt arm is resonated below 60 mc and becomes capacitive at higher frequencies. This capacitive shunting helps maintain a nearly constant bandwidth throughout the entire tuning range.

Output from the high band mixer is through the same plate load IF network used for the low band mixer (see subsection 3, paragraph C of this section). This use of a common plate load for the two mixers is arranged by having their plates tied together through a coaxial cable.

The high band mixer is placed in operation by means of bandswitch section S102A, which applies screen voltage to V503 when the bandswitch is in the 60-300 MC position.

5. IF STRIP.

A. <u>Input</u>. The input to the IF strip is through connector J601, which is coupled to the low band tuner output by coaxial cable. From J601, a portion of the IF signal is coupled through a 50-ohm T-pad composed of resistors R601, R602, and R603, to the SM OUTPUT, J107. At J107 a signal monitor may be connected to view the 21.4-mc IF signal. In parallel with the T-pad input is the primary of transformer T601, a broadband transformer whose secondary applies the IF signal to the first IF amplifier.

B. First and Second IF Amplifiers. The first and second IF amplifiers, V601 and V602, are type 7587 Nuvistor tetrodes. Coupling between them is according to the IF bandwidth selected and is determined by relays K601 and K602. When the bandwidth switch, S103, is in the 300 KC position, K601 is actuated, K602 is unactuated, and coupling is through a broadband coupling network consisting of inductor L603, capacitors C613 through C617, and inductor L604. When the bandswitch is in the 20 KC position, K601 is unactuated, K602 is actuated, and coupling is through crystal filter Y601. The crystal filter's low impedance level requires impedance transformation, which is achieved by capacitive tapping of the V601 plate circuit, through C611 and C612, and of the V602 grid circuit, through C618 and C620. When the crystal filter is not in use, the relays ground each end of it.

Gain control of the first and second IF amplifiers is by application of a grid bias. The gain control voltage is applied directly to the first stage, but is applied to the second stage after being delayed by Zener diode CR601. This permits signal build-up to a sufficient level in the first IF stage before the gain of the second stage is reduced.

111

To keep the limiters driven to saturation, only automatic gain control voltage is used during FM operation. The FM AGC voltage is developed in the stage functioning as a first limiter, V603, and reaches the first IF stage through mode selector switch section S104A and feedthrough capacitor C602. During AM operation with AGC, an AGC voltage from the stage functioning as a detector, V604, is applied to the first IF stage through a series consisting of switch section S104A, the AGC contact of switch S105, and the AM or CW contact of switch section S104B.

During operation with manual gain control (possible during both the AM and CW modes) the gain control voltage is derived from the IF GAIN potentiometer R108. This potentiometer, in series with resistor R111 is connected between -24 vdc and ground. The voltage tapped from R111 for manual gain control reaches the first IF amplifier through the manual gain position contact of S105 and the AM or CW contacts of S104A. From there it is conducted to other stages as has been described above for AGC voltages.

During either manual or automatic gain control, the delayed gain control voltage from Zener diode CR601 is also applied to the two RF amplifiers (see subsection 3, paragraph A, and subsection 4, paragraph A, of this section).

To avoid regeneration (which might distort the response curve shape or even bring about oscillation) the plate-to-grid capacitance in the first and second IF amplifier stages is neutralized. This is done by connecting a three-capacitor pi-network between the plate and screen grid circuits. These capacitors are C605, C606, and C607 in the V601 circuit, and C624, C625, and C626 in the V602 circuit.

C. <u>AM Third IF Amplifier/FM First Limiter</u>. A type 7587 Nuvistor tetrode, V603, is used as a third IF amplifier in the AM mode and as a first limiter in the FM mode. This change of functions according to the mode of operation is brought about by using mode selector switch section S104C to vary the screen grid potential, a higher potential being used to operate the tube as an IF amplifier and a lower potential being used to operate it as a limiter. In the FM mode it grounds resistor R618, and that resistor acts as a screen grid bleeder, reducing the V603 screen voltage. In the AM position S104C removes the ground from R618, raising the V603 screen voltage. In the CW position S104C also grounds R618.

A double-tuned circuit is used to couple to this stage from the second IF amplifier. The output from this stage is through the mutual inductance of inductors L607 and L608.

In the FM mode the AGC voltage for FM is developed by grid rectification across resistor R615 and is conducted to the FM position contact of S104A. From there, it functions as the FM AGC voltage (see subsection 5, paragraph B, and subsections 3 and 4, paragraphs A, of this section).

D. <u>AM Detector/FM Second Limiter</u>. A type 7587 Nuvistor tetrode, V604, is used as a grid detector in the AM and CW modes, and as a second limiter in the FM mode. Its input is through a transformer of a bandwidth wide enough to prevent IF response shape distortion resulting from the grid circuit detuning during signal level changes.

In the AM and FM modes the stage performs its required function without circuit change. However, in the CW mode, plate voltage is removed from the stage. This is to block the BFO

signal from feeding on through the FM demodulator and dc amplifier to the TUNING meter, since the meter would respond to the BFO and not to the IF signal in the CW mode.

In the AM and CW modes, the detector load is formed by resistors R626 and R627. Inductor L609 is a self-resonant choke which filters IF from the output. From the junction of the load resistors, the demodulated output is taken off through blocking capacitor C642 and conducted to mode selector switch section S104D, which applies the signal to both the AUDIO GAIN and the VIDEO GAIN.

In the AM mode with AGC, this stage also provides an AGC voltage. This AGC voltage is taken from the junction of resistors R624 and R639, which form a relatively high resistance shunt to the detector load. From the junction of these resistors the AM AGC voltage is conducted through S104B to the AGC position of S105, from which it may be applied to the gain control line through S104A.

In the CW mode this stage receives the BFO signal from the BFO buffer-doubler stage through capacitor C647.

In the FM mode this stage applies its output to the FM demodulator stage, through the discriminator transformer made up of inductors L610 and L611.

E. <u>FM Demodulator</u>. A Foster-Seeley type FM demodulator with a capacitance tapping of the secondary circuit is used. This method of tapping provides a high degree of balance unaffected by coil characteristics or tuning slug positions. Germanium diodes, CR602 and CR603, type 1N198A, are used for phase detection. C646 and C675 of the primary and secondary circuits have negative temperature coefficients and are used to compensate for the center frequency drift caused by ambient temperature variation. A self-resonant choke, L612, is placed in series with the demodulator output to attenuate the IF signal. Output from this stage is always to the first stage of the dc amplifier, Q201 in the video module. During FM operation mode selector switch section S104D conducts the demodulated FM signal from the second dc amplifier stage to the AUDIO GAIN and VIDEO GAIN potentiometers.

F. Beat Frequency Oscillator. The BFO uses a type 6CW4 triode, V606, connected in a Clapp oscillator circuit. It oscillates at 10.7 mc, one half of the IF frequency. BFO pitch control is accomplished by adjusting capacitor C661, which changes the cathode-to-ground capacitance of the oscillator. The values chosen provide a reasonable degree of control linearity over the range of \pm 20 kc. Effects of oscillator frequency drift caused by temperature changes are reduced by the temperature compensating capacitor C665 in the tank circuit, which has a negative temperature coefficient. The plate circuit is tuned to 21.4 mc. Output of the BFO is taken from the plate circuit and fed to the BFO buffer-doubler stage through C659.

G. <u>BFO Buffer-Doubler</u>. To achieve isolation between the BFO and the signal circuit and therefore to reduce oscillator pulling, a 6CW4 buffer-doubler stage, V605, is used. Stray coupling is eliminated by complete shielding of the oscillator circuit. The BFO signal is connected to the grid of V604, through C647. CW operation is obtained when mode selector switch section S104E applies B+ voltage to V605 and V606.

H. <u>DC Amplifier</u>. The dc amplifier consists of two 2N333 transistors, Q201 and Q202, in a cascaded emitter-follower configuration. The input is permanently connected to the output of the FM demodulator, to which the dc amplifier presents a high impedance. The output presents a low impedance across which the AUDIO GAIN and VIDEO GAIN potentiometers are shunted during FM operation. This shunt connection is made through switch section S104D.

Through resistor R204, the TUNING meter is shunted across the dc amplifier output. A bleeder current from +12 vdc through resistor R205 and the meter to ground holds the meter to a center indication (zero) when the meter is not receiving a voltage from the dc amplifier. Therefore the TUNING meter circuit is self-balancing, eliminating the need for a zero-adjust control. When receiver tuning is inexact, a dc component appears in the FM demodulator output, and this dc component is amplified and applied to the meter.

L- IL

Thus, in the AM and FM modes the TUNING meter functions by indicating the value of the dc component of the FM demodulator output, a component which is zero when tuning is exactly at the carrier center frequency, and when tuning is inexact is of a polarity and level such as to indicate the direction and extent to which the tuning is off.

I. <u>Video Amplifier</u>. The video amplifier consists of two 2N333 transistors, Q203 and Q204. From the VIDEO GAIN potentiometer, R109, input is to a common emitter amplifier through an RC network, resistor R202 in parallel with capacitor C202, designed to give high frequency boost. To give the video amplifier a low output impedance, the output stage is an emitter follower. Over-all response improvement is gained by resistor R208, which feeds back from the output to the input. A Zener diode, CR201, establishes a regulated 12 vdc supply for application to the video amplifier, as well as to the dc amplifier. A -24 vdc voltage is also used in establishing the bias levels of the four transistors in the video module.

J. <u>Audio Amplifier</u>. The audio amplifier module uses three dc-coupled transistors, Q301, Q302, and Q303. The first stage is a conventional voltage amplifier in a common emitter configuration. The input signal from the AUDIO GAIN potentiometer R116, is applied to this stage through capacitor C301 and resistor R301. The second stage is an emitter follower used to match the high impedance of the first stage output to the low input impedance of the third stage, the power amplifier. High frequency response improvement is obtained by a coupling between the second and third stages. This coupling is made up of capacitor C302 and resistor R308 in parallel. Resistor R307 provides direct feedback from the third to the first stage. Resistor R310 in the emitter lead of the output stage, provides signal frequency current feedback.

Operating voltages are provided by a +12 vdc, regulated by Zener diode CR301 for application to the first two stages. The positive voltage applied to the output stage collector is not regulated, since the collector current is relatively independent of collector voltage.

The output is through transformer T301, which forms the third stage collector load. T301 provides a balanced output of 600 ohms impedance. In parallel across the secondary of T301 are connected the PHONES jack, J101, and terminals 1 and 2 on TB101, for connecting a speaker.

K. <u>Power Supply</u>. The power supply is operated from a 115-vac, 50-400 cps source. A 3/8ampere fuse of the slo-blo type is used in the primary winding of transformer T101. Four secondary windings are used to supply all necessary voltages to the receiver. One 6.3-vac winding supplies all the filaments. One supplies a full-wave rectifier whose output is LC filtered and taken off at 175 vdc. From the same rectifier a Zener diode, CR111, and a resistor, R101, are used to obtain a 120-vdc regulated supply. A third winding supplies another full-wave rectifier, whose output is 150 vdc, used only to power the 60-300 mc RF tuner. The negative side of this rectifier is held at -3 vdc and used as cathode return for V501 and V502. The fourth secondary winding supplies power for three full-wave rectifying circuits, two of which employ RC filtering and provide +24 vdc and -24 vdc for the video and audio stages. The third full-wave rectifying circuit uses a capacitive input filter and supplies +24 vdc for relay operation.

SECTION IV

INSTALLATION AND OPERATION

1. INSTALLATION.

A. <u>Mounting</u>. The receiver is designed for installation in a standard 19-inch rack. It requires 3 1/2" of vertical space and will project 15 1/2" back into the rack. Adequate ventilation should be allowed.

B. <u>Power Connections</u>. Plug the power cord into a 115 vac, 60-400 cps source. The third pin of the power cord plug grounds the receiver. If a three-pin receptacle is not available, use the adapter provided.

C. <u>Single Antenna Operation</u>. For operation with a single antenna, connect it to the INPUT, 1102, using a 50-ohm coaxial cable.

D. Two-Antenna Operation. For operation with two antennas proceed as follows:

 At J103 on the coaxial switch, disconnect the cable leading from J401 on the low band tuner chassis.

(2) Connect the free end of the disconnected cable to J106, the connector leading to the AUX, INPUT, J105.

(3) Connect the low band (30-60 mc) antenna to the AUX. INPUT, J105, using a 50ohm coaxial cable.

(4) Connect the high band (60-300 mc) antenna to the INPUT, J102.

E. <u>Signal Monitor Connection</u>. To use a signal monitor with the receiver, connect its input to the SM OUTPUT, J107, using a 50-ohm coaxial cable.

F. Video Output Connection. Connect the video amplifier load to the VIDEO OUTPUT, J108.

G. <u>Audio Output Connection</u>. To use headphones, plug them into the PHONES jack. If a speaker is to be used, it should be of 600-ohm impedance and should be connected across terminals 1 and 2 of the AUDIO OUTPUT terminal strip, TB101.

H. Ground Connection. System ground should be connected to terminal G of TB101.

2. OPERATION.

The following list is for the guidance of those operating the receiver:

(1) The POWER switch applies ac power to the receiver when the switch is in the up position. One of the tuning dials will light up when power is turned on. The receiver should be allowed a few minutes warm-up prior to use.

(2) For tuning, the bandswitch should be rotated to select operation in the 30-60 mc band or in the 60-300 mc band. As a certain band is selected the dial light for the selected band will come on. The tuning controls may each be preset, allowing rapid switching between two RF carriers in different bands. Each division of the 30-60 mc dial corresponds to 500 kc. Each division of the 60-300 mc dial corresponds to one megacycle.

(3) The mode selector should be set to FM, AM, or CW prior to tuning. When using the CW position, the IF GAIN control should never be at the AGC position.

(4) The BANDWIDTH switch should be set to 300 KC for wideband operation and to 20 KC for narrow band operation. When searching for signals, it is advisable to use wideband operation. For CW operation, only narrow band is recommended.

(5) The SIGNAL STRENGTH meter indicates the relative magnitude of the carrier being received and is not calibrated in any specific units. It is of maximum usefulness when tuning in AM or CW signals, which should be tuned in to maximum signal strength.

(6) The TUNING meter indicates zero when tuning is exactly to the center of the carrier, to the left of center when tuning is below the carrier frequency and to the right of center when tuning is above the carrier frequency. The amount of meter deviation indicates the relative degree of detuning, but the meter is not calibrated to interpret detuning in frequency units. This meter is useful in tuning in both AM and FM signals but will not indicate during CW operation.

(7) The IF GAIN control may be used in the AM mode to obtain manual control of the IF gain, or set at AGC to obtain automatic control. In the CW mode, only manual gain control should be used. In the FM mode, the IF GAIN control may be left in any position, since only automatic gain control is possible during FM operation.

(8) The BFO TUNING control may be adjusted during CW operation to obtain the desired pitch of the beat note.

(9) The AUDIO GAIN control should be adjusted for the desired audio output level.

(10) The VIDEO GAIN control should be adjusted for the desired video output level.

SECTION V

MAINTENANCE

1. GENERAL.

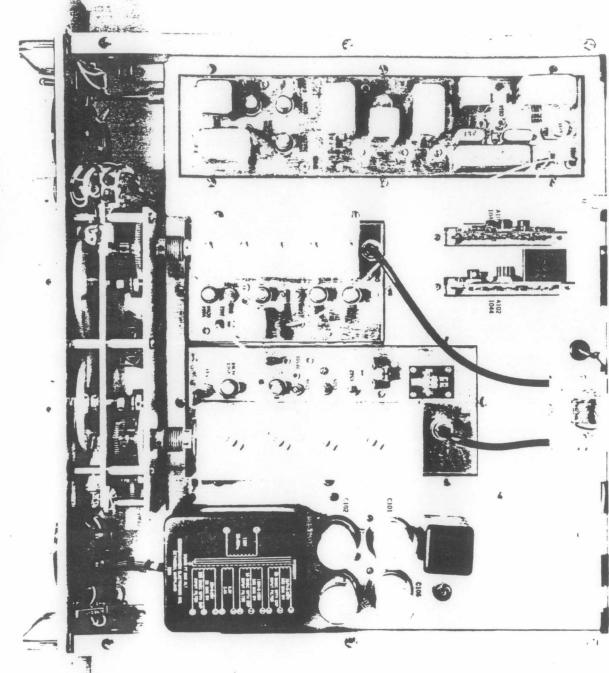
The type 901 receiver will give comparatively trouble-free performance. However, should trouble occur, it is important that maintenance personnel be familiar with Section III, in which the circuits are described. In addition, use should be made of Figures 5-1 through 5-9, in which the location of components is shown; Figure 6-1, the complete schematic diagram; and Table 2, in which the tube socket and transistorized module pin voltages are given. The receiver presents no special maintenance problems and normally requires no care beyond being kept clean. This is best accomplished by the use of compressed air at not more than 60 psi.

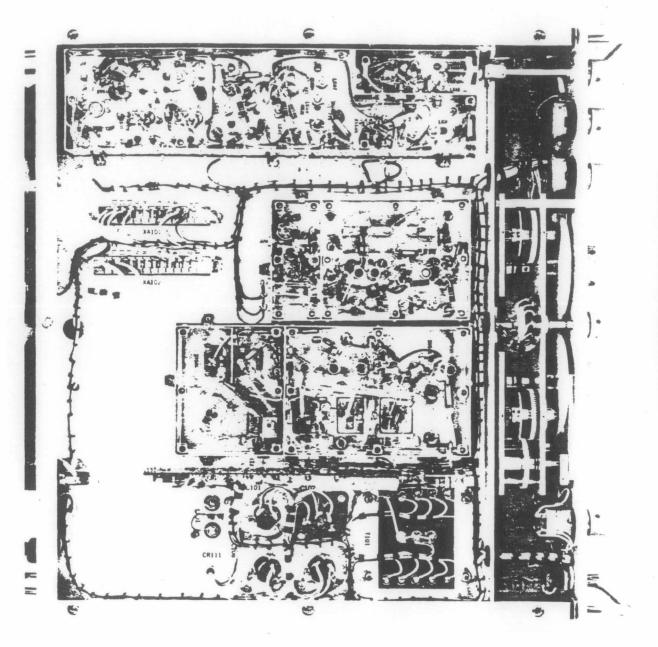
CAUTION

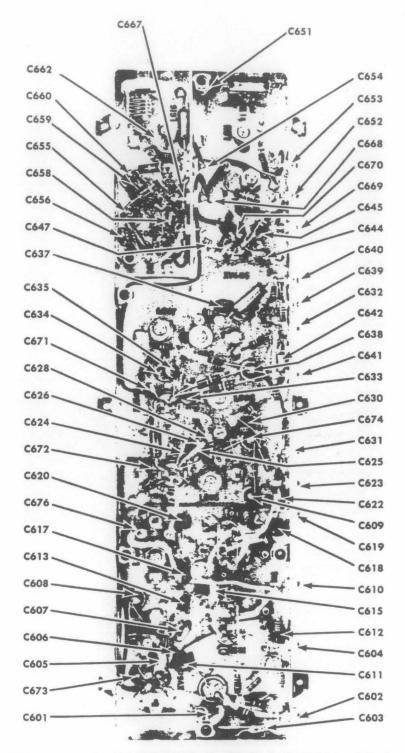
All maintenance work within this receiver should be kept to a minimum and performed only by trained and experienced personnel. The placement of components and the dress of leads in the equipment (especially within the RF tuners) have been carefully engineered to give optimum performance. In replacing any components, great care should be exercised to duplicate the exact physical layout of the original assembly.

2. MAINTENANCE OF GEAR TRAINS AND TUNING DIALS.

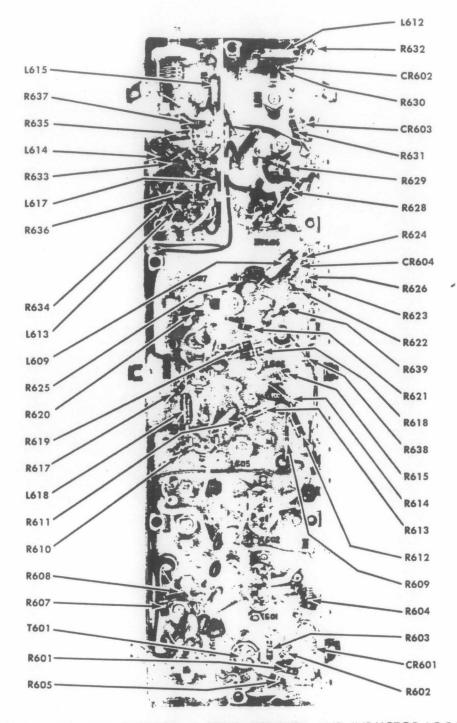
The gear train mechanisms use friction drive and rely on the stops of the inductuners to halt the turning of the inductuners. The only maintenance normally needed for the mechanisms is the occasional application of a few drops of light oil on the shaft bearings. Be careful not to get oil on the friction drive plates.


The tuning dials are rigidly attached to their shafts and are geared to the tuners in a manner such as to make it quite unlikely they will ever get out of position. However, if it becomes necessary to mechanically realign either dial (such as after an inductuner replacement), follow these steps:


(1) By releasing the Allen setscrews on each side of it, loosen the coupling between the gear train shaft and the inductuner shaft.


(2) Rotate the inductuner shaft to maximum clockwise position.

(3) Turn the dial until the hairline is at the second mark above 62, in the case of the low band dial, or at the first mark above 300, in the case of the high band dial.


(4) Tighten the coupling between the gear train and inductuner shaft.

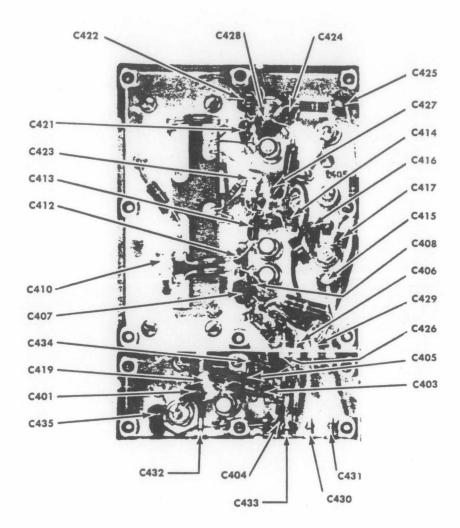
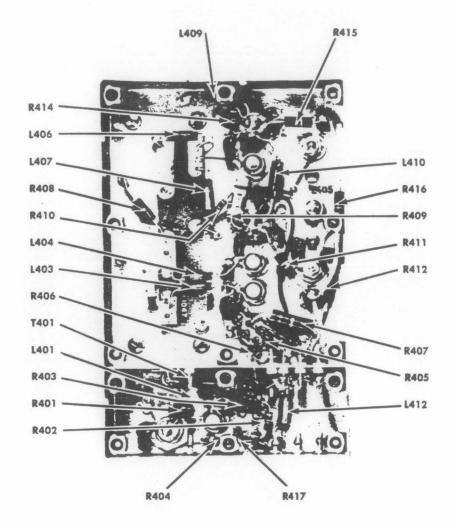
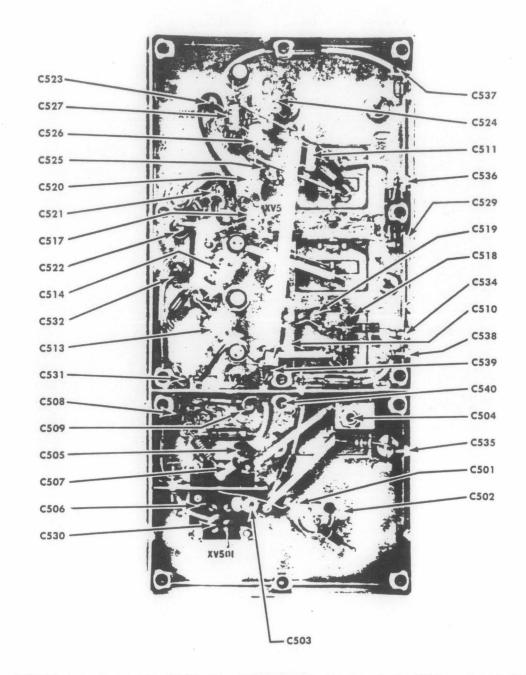




FIGURE 5-5. TYPE 901 RECEIVER, LOW BAND TUNER, CAPACITOR LOCATION

П

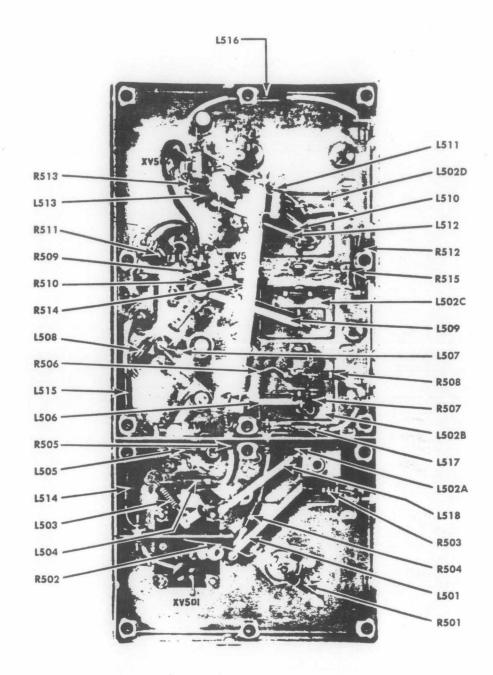


FIGURE 5-8. TYPE 901 RECEIVER, HIGH BAND TUNER, RESISTOR AND INDUCTOR LOCATION

14

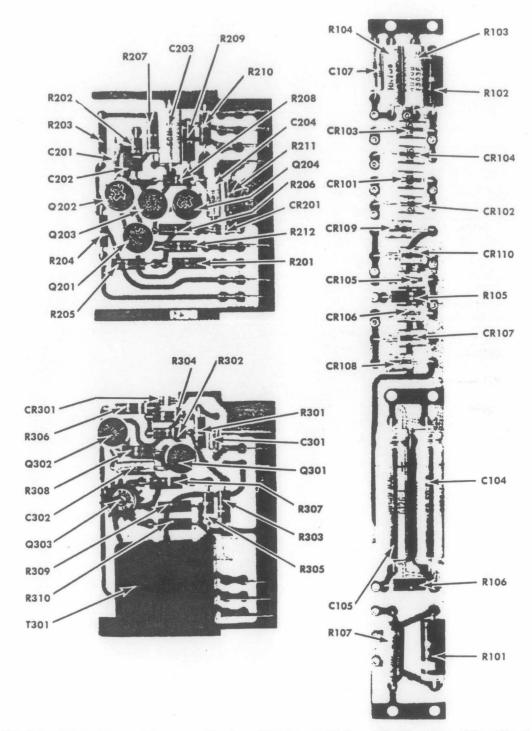


FIGURE 5-9. TYPE 901 RECEIVER, AUDIO MODULE, VIDEO MODULE, AND COMPONENT BOARD

TABLE 2

TUBE SOCKET AND MODULE PIN VOLTAGES, TYPE 901 RECEIVER

	Turne		Tube Sock	et Pin Nur	nbers			C	C	Usetor	Heater
Symbol	Туре	2	. 4*	8	10	12	Plate	Grid*	Cathode	Heater	neater
V401**	6CW4	75	06	.23	6.0 vac	0					
V402***	6CW4	138	72	76.5	6.0 vac	0					-
V403**	7587	24.5	-1.5**	0	0	6.0 vac	165				
V404***	6CW4	74.5	-1.85 to	0	6.2 vac	0					
V501**	7077						145	-47	.86	6.0 vac	0
V502**	7077						143	0	1.8	6.0 vac	0
V503**	7587	22	-1.5**	0	6.0 vac	0.	165				
V504**	6CW4	74	-3.45 to -4.2**	0	0	6.0 vac					
V601	7587	24	-4.4	0	0	6.0 vac	150				
V602	7587	45*** 50***	035	1.4	0	6.0 vac	170				
V603	7587	24 39****	05 04****	.20 .35****	0	6.0 vac	170 160***				
V604	7587	15	-1.5	0	0	6.0 vac	27.5				
V605	6CW4	58 106 +	30 -3.0 ±	0	0	6.0 vac					
V606	6CW4	94 105 +	7 -7.4=	0	0	6.0 vac					

Video Module Pin Numbers							A	udio Moo	dule l	
1	2	3	4	9	10	11	12	2	3	4
0	-23.5	-1.1	0	25	0	-1.1	. 0	0	-1.1	25

Note:

All readings taken with reference to ground, using RCA VoltOhmyst WV-98B. All readings are positive dc unless otherwise noted. All readings taken with receiver powered by 115 vac, 60 cps; no signal input; controls set as follows unless otherwise noted: BANDWIDTH switch at 300 KC; mode selector at FM; IF GAIN control at AGC; AUDIO GAIN maximum clockwise; VIDEO GAIN maximum clockwise.

Pin Numbers

0

13

0

* Voltages in this column taken with 1 megohm resistor in series with probe.

**Readings will vary with frequency.

** Readings taken with bandswitch at 30-60 MC position.

** Readings taken with bandswitch at 60-300 MC position.

*** Readings taken with mode switch in AM position.

Readings taken with mode switch in CW position.

(5) Check the operation by turning the tuning crank counterclockwise until the inductuner no longer turns. The dial should read at the mark just beyond 30 in the case of the low band tuner, and just beyone 60 in the case of the high band tuner.

3. PLUG-IN MODULES.

The modules used for the video amplifier and the audio amplifier can be easily removed by pulling them out of the receptacles into which they are fitted. The numbers on the pins coming out of the modules correspond to the numbers indicated on the complete schematic diagram, Figure 6-1, at the points where the connecting leads pass through the dashed lines outlining each module on the schematic. For example, the output from the audio amplifier to the PHONES jack is through pins 11 and 13 of the receptacle into which the audio amplifier module is plugged.

4. PRINTED CIRCUIT COMPONENT REPLACEMENT.

In cases where electronic parts are to be removed from printed circuit boards, do not damage the printed circuit board by applying too much heat from the soldering iron. Parts on printed circuit boards may be replaced as shown in Figure 5-10. The leads of the faulty part should be clipped with cutters so that sufficient length remains to wrap around the leads of the replacement part.

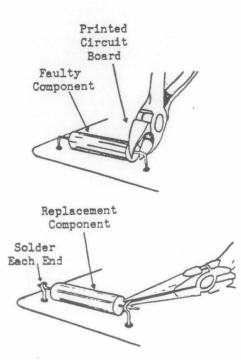


Figure 5-10. Printed Circuit Board Component Replacement,

5. TROUBLESHOOTING.

The greatest percentage of troubles will be caused by failures of the fuse, tubes, diodes, or relays. The proper functioning of all these parts should be assured either by test or by replacement with parts known to be good before any further troubleshooting is carried out.

After the above measure has been carried out, initial troubleshooting should be directed toward localizing the problem to a specific portion of the receiver. In the case of the plug-in modules, a quick check can be made by simply plugging in a new module known to be good. Another procedure which should be considered for localizing troubles is to feed in a signal at the antenna jack and then check the signals present at each test point. To this end, it is desirable that all maintenance personnel familiarize themselves with the alignment procedures, even if an alignment is not required, because those procedures include methods of checking performance which may help in other work. Lastly, it should be borne in mind that the power supply should be known to be functioning perfectly before any other circuit is suspected.

6. ALIGNMENT INSTRUCTIONS.

174

A. <u>General</u>. The alignment procedures in this book are suitable for performance in the field when making periodic performance checks or when making adjustments after replacing tubes or components. Only those controls specifically referred to within a series of steps given for aligning a particular circuit affect the work in that circuit. Those controls not mentioned in any one series of steps may be left in any position. The alignment of this receiver should be performed only with suitable equipments by technicians thoroughly familiar with their use and thoroughly familiar with the receiver. Allow a 30-minute warm-up period before beginning the work.

A post-detection type of marker adder is recommended, and the alignment procedures in this book assume that one is to be used. However, if such a marker adder is not available, the marker generator output should be loosely coupled to the sweep generator output. This can be done by connecting the marker signal source to a turn or two of insulated wire wrapped around the sweep generator lead near the point of connection to the circuit under test, or by coupling to the sweep generator lead through a small capacitor. To insure that the addition of the marker is not affecting the response curve, disconnect the marker generator and observe that no change in the curve's shape or symmetry occurs.

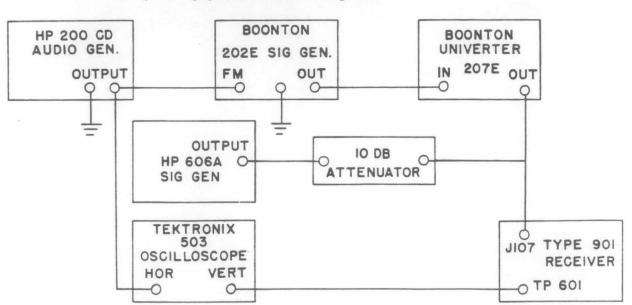
A low-capacity shielded cable should be used to connect to the oscilloscope, and the shield should be grounded as closely as possible to the point to which the center conductor is connected.

B. Equipments Required. The following equipments or their equivalents are required to perform the complete receiver alignment.

- (1) Oscilloscope, Tektronix Type 503.
- (2) VTVM, RCA Type WV-98B.
- (3) Signal Generator, Boonton Type 202E.
- (4) Univerter, Boonton Type 207E.
- (5) Signal Generator, Hewlett -Packard 606A.
- (6) Audio Signal Generator, Hewlett-Packard 200 CD.

(7) Sweep Generator, Jerrold 900-A with external marker generator, or Telonic Model HD-1 with built-in 10-mc harmonic generator.

- (8) Signal Generator, Hewlett-Packard 608D.
- (9) Assorted cables, connectors, attenuation pads and alignment tools.


7. IF STRIP ALIGNMENT PROCEDURES.

311.5

A. <u>General</u>. For each circuit of the IF strip a separate alignment procedure is given under C, D, E, F, G, and H below. Any one of the procedures may be carried out without disturbing other portions of the IF strip.

B. <u>Initial Settings</u>. The following steps should be performed before beginning the alignment procedures given under C, D, E, and F below. These include all IF alignment procedures except those for the BFO. For aligning only the BFO, they may be omitted.

- (1) Set receiver function switch to AM position.
- (2) At C602, ground gain control voltage line to IF strip chassis.
- (3) By removing P601 from J601, disconnect IF strip from RF tuners.
- (4) Set oscilloscope horizontal sensitivity to 0.2 volt per cm.
- C. First to Second IF Amplifier, V601 to V602, Interstage Alignment, 20-kc Bandwidth.

(1) Set up test equipment as shown in Figure 5-11.

Figure 5-11. Type 901 Receiver, Equipment Setup, V601 to V602 Interstage Alignment, 20-kc Bandwidth

(2) Set audio generator output to 5 cps.

(3) Set oscilloscope vertical sensitivity to 50 mv per cm.

(4) Set Boonton 202E output to 171.4 mc.

(5) Set Boonton Univerter dial at 0 KC.

コゴ

(6) Adjust sweep width by setting FM deviation to approximately 60 kc.

(7) Set receiver BANDWIDTH switch to 20 KC position.

(8) Adjust L603 and L604 of receiver for a symmetrical response curve centered at 21.4 mc, on oscilloscope screen, as shown in Figure 5-12.

(9) Adjust Hewlett -Packard 606A output for use as a 21.4-mc marker with marker output level such that marker barely appears on response curve.

(10) Check bandwidth by tuning Boonton Univerter dial so that response curve moves across oscilloscope screen. Bandwidth will be the frequency difference read from dial when 3-db curve points intersect 21.4-mc marker line, as shown in Figure 5-12.

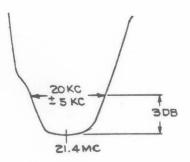


Figure 5-12. Type 901 Receiver, Typical Response Curve, V601 to V602 Interstage Alignment, 20-kc Bandwidth

D. First to Second IF Amplifier, V601 to V602, Interstage Alignment, 300-kc Bandwidth.

(1) Set up test equipment as shown in Figure 5-13.

(2) Adjust Jerrold 900-A sweep generator near 21.4 mc for narrow sweep width with its detector switch at external detector position.

(3) Set oscilloscope vertical sensitivity at 50 mv per cm and adjust sweep generator sweep width until a response curve is well displayed on oscilloscope screen.

(4) Set receiver BANDSWITCH to 300 KC position.

(5) Adjust C614 and C616 for a symmetrical response centered at 21.4 mc, as shown in figure 5-14.

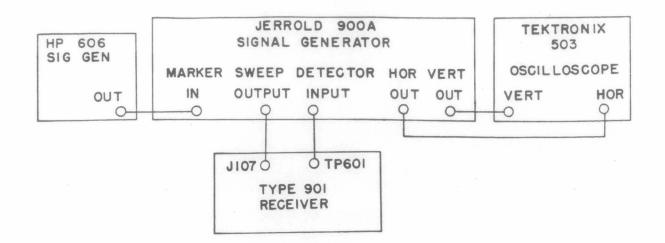


Figure 5-13. Type 901 Receiver, Equipment Setup, V601 to V602 Interstage Alignment, 300-kc Bandwidth

(6) Using calibrated 21.4-mc signal from Hewlett-Packard 606A signal generator as a marker, check bandwidth by moving the marker along response curve. Bandwidth will be the frequency difference read from signal generator dial at points where marker intersects 3-db points of response curve, as shown in Figure 5-14.

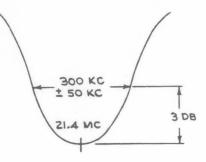


Figure 5-14. Type 901 Receiver, Typical Response Curve, V601 to V602 Interstage Alignment, 300-kc Bandwidth

E. <u>Second IF Amplifier to Third IF Amplifier/First Limiter, V602 to V603, Interstage</u> Alignment.

(1) Set up test equipment as shown in Figure 5-13 except that sweep output of sweep generator should be connected to pin 4 of V602.

(2) By removing P601 from J601, disconnect IF strip from RF tuners.

(3) Adjust Jerrold 900 - A sweep generator near 21.4 mc for narrow sweep width with its detector switch at external detector position.

(4) Set oscilloscope vertical sensitivity at 50 mv per cm and adjust sweep generator sweep width until a response curve is well displayed on oscilloscope screen.

(5) Set receiver bandswitch to 300 KC position.

(6) Adjust L605 and L606 for a symmetrical response centered at 21.4 mc, as shown in Figure 5-15.

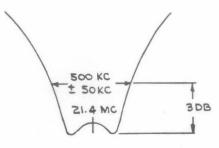


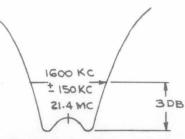
Figure 5-15. Type 901 Receiver, Typical Response Curve, V602 to V603 Interstage Alignment

F. Third IF Amplifier/First Limiter to AM Detector/FM Second Limiter, V603 to V604, Interstage Alignment.

(1) Set up test equipment as shown in Figure 5-13 except that sweep output of sweep generator should be connected to pin 4 of V603.

(2) Adjust Jerrold 900-A sweep generator near 21.4 mc for narrow sweep width with its detector switch at external detector position.

(3) Set oscilloscope vertical sensitivity at 50 mv per cm and adjust sweep generator sweep width until a response curve is well displayed on oscilloscope screen.


(4) Set receiver bandswitch to 300 KC position.

(5) Adjust L607 and L608 for a symmetrical response curve centered at 21.4 mc, as shown in Figure 5-16.

(6) Adjust C657 for dip in center of response curve, as shown in Figure 5-16.

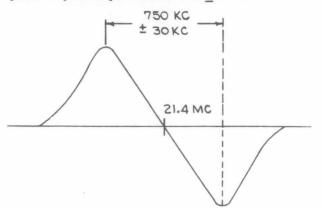
G. Discriminator Alignment.

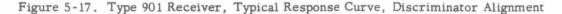
(1) Set up equipment as shown in Figure 5-13 except that sweep output of sweep generator should be connected to pin 4 of V603 and the detector input should be connected to the receiver's FM output, E602.

(2) Adjust Jerrold 900-A sweep generator near 21.4 mc for narrow sweep width with its detector switch at external detector position.

(3) Set oscilloscope vertical sensitivity at 50 mv per cm and adjust sweep generator sweep width until a response curve is well displayed on oscilloscope screen.

(4) Set receiver bandswitch to 300 KC position.


(5) Adjust phasing of the sweep generator.


(6) Adjust L611 for zero crossing of S-curve at 21.4 mc and adjust L610 for symmetry of S-curve, as shown in Figure 5-17.

(7) Using calibrated 21.4-mc marker from Hewlett-Packard 606A signal generator, check that the S-curve has the following characteristics:

- (a) centered at 21.4 mc.
- (b) equal amplitude and symmetry.

(c) peak-to-peak separation of 750 +30 kc, as shown in Figure 5-17.

H. BFO, V606, Alignment.

Set receiver function switch to CW position.

(2) Set receiver BANDWIDTH switch to 20 KC position.

(3) Connect the Hewlett -Packard 606A signal generator to receiver's SM OUTPUT,

J107.

(4) Connect a set of headphones to the receiver PHONES jack.

(5) Set the receiver BFO TUNING control with the white dot at the upward midpoint

position.

(6) Adjust L616 for zero beat.

8. LOW BAND RF TUNER ALIGNMENT PROCEDURES.

A. General. For each circuit of the low band RF tuner a separate alignment procedure is given under \overline{C} , \overline{D} , \overline{E} , and F below. Any one of the procedures may be carried out without disturbing other portions of the tuner. However, all low band RF tuner alignment procedures are critical and should not be attempted in the field unless considered absolutely necessary, such as after replacement of a component.

B. <u>Initial Settings</u>. The following steps are necessary for the alignment procedures in all parts of the low band RF tuner and should be carried out prior to performing any work listed under C, D, E, and F below.

(1) Set the receiver function switch to the AM position.

(2) Set the receiver bandswitch to the 30-60 MC position.

(3) Connect the VTVM positive lead to C432, negative lead to the tuner chassis, and adjust the IF GAIN control until the VTVM indicates -1.5 vdc.

C. Low Band Mixer, V403, Plate Coil, L405, Alignment.

(1) Set BANDWIDTH switch to 20 KC position.

(2) From the Hewlett-Packard 606A signal generator, feed a calibrated 21.4-mc signal to the INPUT jack, J102.

(3) Adjust signal generator output until receiver SIGNAL STRENGTH meter indicates at 1/2 deflection.

(4) Adjust L405 for maximum indication on the SIGNAL STRENGTH meter.

D. Low Band Local Oscillator, V404, Alignment.

Set the BANDWIDTH switch to the 300 KC position.

(2) Set the receiver dial exactly at 30 mc.

(3) Feed the output of the Hewlett-Packard 608D VHF signal generator to the INPUT jack, J102.

(4) Calibrate the VHF signal generator to produce exactly 30 mc.

(5) Adjust the output level of the VHF signal generator until the SIGNAL STRENGTH meter indicates at 3/4 deflection.

(6) Recalibrate the VHF signal to exactly 30 mc.

(7) Adjust C420 until the TUNING meter indicates exactly at the center of its scale.

(8) Tune the dial exactly to 60 mc.

7

(9) Calibrate the VHF signal exactly to 60 mc. If the TUNING meter again indicates exactly at the center of its scale, the alignment is completed. If not, adjust C420 for center indication of TUNING meter.

(10) Repeat steps (2) through (9) until the TUNING meter indicates at its center for both 30 mc and 60 mc.

E. Low Band RF Amplifier to Mixer, V402 to V403, Interstage Alignment.

(1) Remove bottom cover from the 30-60 mc tuner chassis.

(2) Unsolder C403 from C402, carefully noting the positions of the two capacitors so that they may later be resoldered together exactly the same.

(3) Set up equipment as shown in Figure 5-18.

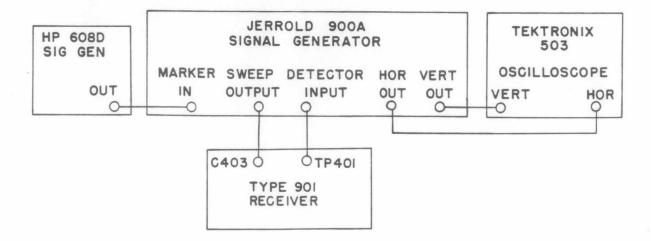


Figure 5-18. Type 901 Receiver, Equipment Setup, V402 to V403 Interstage Alignment

(4) Set the oscilloscope vertical sensitivity to 10 mv per cm and the vertical input to the ac-coupled position.

(5) Set the oscilloscope horizontal sensitivity such that the total trace of the horizontal sweep is 10 cm.

(6) Set the receiver dial to 30 mc and sweep generator at approximately 30 mc.

(7) Using a calibrated 30-mc signal from the Hewlett-Packard 608D signal generator as a marker, adjust C409 and C411 for a symmetrical double-tuned response centered at 30 mc.

(8) Change receiver dial to 60 mc and sweep generator to approximately 60 mc.

(9) Using a calibrated 60-mc signal from the Hewlett-Packard 608D signal generator as a marker, check the response for a symmetrical double-tuned response with a center dip of approximately 10%. If the response seems acceptable, the alignment is finished. Otherwise, adjust C409 and C411 to produce proper centering and symmetry.

(10) Repeat steps (6) through (9) until the response curve has an acceptable symmetry and centering at both ends of the band.

F. Low Band RF Tuner Input Circuit Alignment.

(1) If C403 and C402 have been unsoldered, resolder them in the exact position they were in originally.

(2) Set up the equipments as shown in Figure 5-18 except that the output of the sweep generator is moved from C403 to the INPUT jack, J102.

(3) Set the oscilloscope vertical sensitivity to 10 mv per cm and the vertical input to the ac-coupled position.

(4) Set the oscilloscope horizontal sensitivity such that the total trace of the horizontal sweep is 10 cm.

(5) Set the receiver dial and sweep generator center frequency to 30 mc.

(6) Using a calibrated 30-mc signal from the Hewlett-Packard 608D signal generator as a marker, adjust C402 for a maximum symmetrical response centered at 30 mc.

60 mc.

(7) Change receiver dial to 60 mc and sweep generator frequency to approximately

ou me.

(8) Using a calibrated 60-mc signal from the Hewlett-Packard 608D signal generator as a marker, adjust C402 for a maximum symmetrical response centered at 60 mc.

(9) Repeat steps (5) and (6).

9. HIGH BAND RF TUNER ALIGNMENT PROCEDURES.

A. <u>General</u>. For each circuit of the high band RF tuner a separate alignment procedure is given under C, D, and E below. Any one of the procedures may be carried out without disturbing other portions of the tuner. However, all high band RF tuner alignment procedures are critical and should not be attempted in the field unless considered absolutely necessary, such as after replacement of a component.

B. Initial Settings. The following steps should be performed before proceeding to any one of the procedures listed below under C, D, or E.

(1) Set the function switch to the FM position.

(2) Set the bandswitch to the 60-300 MC position.

C. High Band Local Oscillator, V504, Alignment.

(1) Set the BANDWIDTH switch to the 300 KC position.

(2) Connect the output of a Hewlett-Packard 608D VHF signal generator to the INPUT jack, J102.

(3) Calibrate the VHF signal generator to produce a 270-mc signal.

(4) Adjust the VHF signal generator output level until the receiver SIGNAL STRENGTH meter reads approximately 3/4 deflection.

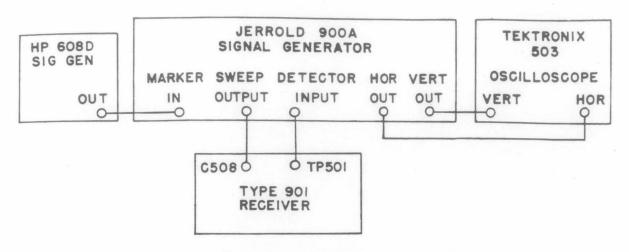
(5) Recalibrate the VHF signal exactly to 270 mc.

(6) Set the receiver dial exactly at 270 mc.

(7) Adjust C533 until the TUNING meter indicates exactly at center.

(8) Set the dial exactly to 100 mc.

(9) Tune and calibrate the VHF signal generator to produce a 100-mc signal. If the TUNING meter again indicates exactly at the center of its scale, the alignment is completed. If not, adjust C533 for center indication of TUNING meter.


(10) Repeat steps (5) through (9) until TUNING meter indicates at its center for both 100 mc and 270 mc.

D. High Band RF Amplifier to Mixer, V502 to V503, Interstage Alignment.

Remove bottom cover from the 60-300 mc tuner chassis.

(2) Unsolder C508 from the junction of L503 and L504, <u>carefully noting the capacitor's</u> position so that it may later be resoldered to exactly the same point.

(3) Set up the equipment as shown in Figure 5-19.

(4) Set the oscilloscope vertical sensitivity to 10 mv per cm and the vertical input to the ac-coupled position.

(5) Set the oscilloscope horizontal sensitivity so that the total trace of the horizontal sweep is 10 cm.

(6) Set the receiver dial to 290 mc and sweep generator to approximately 290 mc.

(7) Using a calibrated 290-mc marker from the Hewlett-Packard 608D signal generator as a marker, adjust C512, C516, and C515 for a symmetrical flat-topped response with the 290-mc marker appearing 6% down on the higher frequency slope as shown in Figure 5-20.

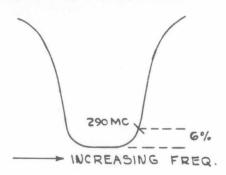


Figure 5-20. Type 901 Receiver, Typical Response Curve V502 to V503 Interstage Alignment, Receiver Dial at 290 mc, Bottom Cover On

(8) Set the receiver dial to 100 mc and sweep generator to approximately 100 mc.

(9) Using a calibrated 100-mc marker from the Hewlett-Packard 608D signal generator, adjust C512 and C516 for a symmetrical double-tuned response with the 100-mc marker appearing at the low frequency peak as shown in Figure 5-21.

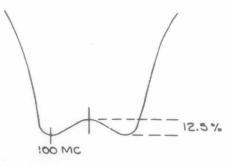


Figure 5-21. Type 901 Receiver, Typical Response Curve, V502 to V503 Interstage Alignment, Receiver Dial at 100 mc, Bottom Cover On

(10) Adjust C515 for 12.5% center dip as shown in Figure 5-21.

(11) Repeat steps (9) and (10) until the final response curve assumes the proper shape with the bottom cover on.

E. High Band RF Tuner Input Circuit Alignment.

(1) If C508 has been unsoldered from the junction of L503 and L504, resolder it to the exact position from which it was taken.

(2) Set up equipment as shown in Figure 5-19 <u>except</u> that the output of the sweep generator is now connected to the INPUT, J102.

(3) Set the oscilloscope vertical sensitivity to 10 mv per cm and the vertical input to the ac-coupled position.

(4) Set the oscilloscope horizontal sensitivity so that the total trace of the horizontal sweep is 10 cm.

(5) Set the receiver dial to 290 mc and the sweep generator to approximately 290 mc.

(6) Adjust C504 for maximum gain and symmetrical response.

(7) Set the receiver dial to 100 mc and the sweep generator to approximately 100 mc.

(8) If the response is symmetrical, the alignment is completed. If not, adjust C504 for a symmetrical response.

(9) Repeat step (6) through (8) as necessary.

1

SECTION VI

PARTS LIST

	Symbol	Description		endor Jame
	1.	MAIN CHASSIS		
	A101	ASSEMBLY, VIDEO MODULE	1355	CEI
	A102	ASSEMBLY, VIDEO MODULE	1044-A	CEI
	A103	ASSEMBLY, CARRIER-OPERATED RELAY MODULE	1124	CEI
	C101A,B	CAPACITOR, ELECTROLYTIC: Twist-Lock 15 uf-15 uf, 350-350 wvdc	43F2299B, Revision 0	GE
	C102A,B	Same as C101A,B		
5	C103A,B	CAPACITOR, ELECTROLYTIC: Twist-Lock 100 uf-100 uf, 50-50 wvdc	43F2300B, Revision 0	GE
	C104	CAPACITOR, ELECTROLYTIC: 50 uf, 50 wvdc	TE-1307	Sprague
	C105	Same as C104		
	C106	Same as C103A		
	C107	CAPACITOR, ELECTROLYTIC, TANTALUM: 10 uf, 20 vdc, <u>+</u> 20%	150D106X0020B0	Sprague
	CR101	DIODE, SILICON RECTIFIER	1N2615	Motorola
	CR102	Same as CR101		
	CR103	Same as CR101		
	CR104	Same as CR101		
	CR105	DIODE, SILICON RECTIFIER	1N2610	Motorola
	CR106	Same as CR105		
	CR107	Same as CR105		
	CR108	Same as CR105	<u>.</u>	
	CR109	Same as CR105		
	CR110	Same as CR105		
	CR111	DIODE, SILICON ZENER	1N3008B/10M120	Z5 Motorola

	· · · · · · · · · · · · · · · · · · ·		
DS101	LAMP: 6-8 volts, 0.15 amp	47	GE
DS102 San	ne as DS101		
DS103	LAMP ASSEMBLY: With #345 lamp polished chrome	107-1930.971	Dialco
F101	FUSE: 3/8 amp, Slo-Blo		Littelfuse
J101	NOT USED		
J102	RECEPTACLE, JACK, BNC: p/o K101		
J103	RECEPTACLE, JACK, BNC: p/o K101		
J104	RECEPTACLE, JACK, BNC: p/o K101		
J105 J106	ADAPTER: Straight Single Hole Bulkhead Feedthru (Jack-Jack), BNC	UG-492A/U	Amphenol
J107A	RECEPTACLE, JACK, BNC	UG-1094/U	Amphenol
J107B	ADAPTER, MICRODOT	53-82	Microdot
J108	Same as J107A		
J109	JACK, PHONE: Open-circuited	C-11	Switchcraft
K101	SWITCH, COAXIAL: 26 vdc, relay operated	317-010202-3	RF Products
K102	RELAY	22RJCC1000GS1C	Sigma
L101	CHOKE: 6h, 60 ma	1070	CEI
M101	METER: 0-50 ua, dc, light gray SL-7858	MM-1	Marion
M102	METER: 100-0-100 ua, dc, light gray SL-7858	3 MM-1	Marion
P101	POWER CORD & PLUG ASSEMBLY	01753-001	Cornish
P102	PLUG, CABLE, BNC	UG-88/U	Amphenol
P103	Same as P102		
P104	Same as P102		
P105	Same as P102		
P106	Same as P102		
P107	Same as P102		
R101	RESISTOR, FIXED COMPOSITION: 4300 ohms +5%, 2 W	HB 4325	AB
R102	RESISTOR, FIXED COMPOSITION: 2000 ohms ±5%, 1 W	GB 2025	AB

-

 \mathbf{P}^{2}

L

	R 103	RESISTOR, DEPOSITED CARBON: 130K ohms + 1%, 1/2 W	DCM1/2	Electra
		RESISTOR, DEPOSITED CARBON: 2700 ohms + 1%, 1/2 W		
	R 104	RESISTOR, DEFOSITED CARDON. 2700 $\dim S \pm 17_0$, 1/2 w	DCM1/2	Electra
	R105	RESISTOR, FIXED COMPOSITION: 82 ohms ± 5%, 1/2 W	EB 8205	AB
	R106	RESISTOR, FIXED COMPOSITION: 820 ohms ± 5%, 1/2 W	EB 8215	AB
	R107	RESISTOR, WIRE WOUND: 250 ohms ± 3%, 3 W	CS	Sage
	R 108	RESISTOR, VARIABLE, COMPOSITION: 10K ohms ± 20%, 1W with SPDT Switch	/ KB22141	CTS
	R 109	RESISTOR, VARIABLE, COMPOSITION: 10K ohms ±20%, 2W	JAIN052P103UA	AB
	R110	RESISTOR, VARIABLE, COMPOSITION: 0.1 meg ±20%, 2W	JAIN052P104UA	AB
•	R111	RESISTOR, FIXED COMPOSITION: 390 ohms +5%, 1/2 W	EB 3915	AB
	R112 S101	RESISTOR, VARIABLE: 200K 2 W SWITCH, TOGGLE, SPST	RV6NAYSD204 8280-K16	
	S102	SWITCH, ROTARY, NON-SHORTING	399213-A	Oak
	S 103	SWITCH, TOGGLE, SPDT	8282-K14	Cutler-Hammer
	S104	SWITCH, ROTARY, NON-SHORTING	399211-A	Oak
	S105	SWITCH: Part of R 108, not separately replaceable		
	S 106 T 101	Same as S103 TRANSFORMER, POWER	1085	CEI
	TB101 TB102	TERMINAL STRIP Same as TB101	3-140-Y	Cinch
	2. VIDE	CO MODULE.		
	C201	CAPACITOR, ELECTROLYTIC, TANTALUM: 0.47 uf +20% 35 wvdc	150D474X0035A2	Sprague
	C202	CAPACITOR, DIPPED MICA: 68 uuf $\pm 5\%$	DM-10-680J	Arco
	C203	CAPACITOR, ELECTROLYTIC, TANTALUM: 22uf +20% 35 vdc	150D226X0035R0	Sprague
	C20.4	Same as C107		
	CR201	DIODE, ZENER: 1N759A	1N759A	P.S.I.
	Q201	TRANSISTOR	2N335	Texas Inst.
	Q202	Same as Q201		

T

Q203	Same as Q201		
Q204	Same as Q201		
R201	RESISTOR, FIXED COMPOSITION: 3.9 megohm + 5%, 1/2W	ЕВ 3955	AB
R202	RESISTOR, FIXED COMPOSITION: 10K ohm + 5%, 1/2W	EB 1035	AB
R203	RESISTOR, FIXED COMPOSITION: 8200 ohm ± 5%, 1/2 W	EB 8225	AB
R204	RESISTOR, FIXED COMPOSITION: 100K ohm ± 5%, 1/2 W	EB 1045	AB
R205	RESISTOR, FIXED COMPOSITION: 1 megohm ± 5%, 1/2 W	EB 1055	AB
R206	RESISTOR, FIXED CARBON FILM: 4.75K ohms 1%	CG1/8	Texas Inst.
R207	1/8 W Same as R206		
R2 08	Same as R204		
R209	RESISTOR, FIXED COMPOSITION: 5600 ohms ± 5%, 1/2 W	EB 5625	AB
R210	Same as R209		
R211	Same as R204		
R212 R213	RESISTOR, FIXED COMPOSITION: 680 ohms ± 5%, 1/2 W RESISTOR, FIXED CARBON FILM: 392K ohms	EB 6815 CG1/8	AB Texas Inst.
3. ÁUD	10 MODULE $\pm 1\% 1/8 W$		
C301	Same as C201	•	
C302	Same as C107		
CR301	Same as CR201		×.
Q301	Same as Q201		
Q302	Same as Q201		
Q303	TRANSISTOR: 2N1700	2N1700	RCA
R301	Same as R202		
R302	RESISTOR, FIXED CARBON FILM: 68.1K ohms	CG1/8	Texas Inst.
R303	ACDIDION, A ANDO GARGOON & ADAM ACT OFFICE	CG1/8	Texas Inst.
R304	$\begin{array}{r} +1\% 1/8W \\ \text{RESISTOR, FIXED CARBON FILM: 6.81K ohms} \\ +1\% 1/8 W \end{array}$	CG1/8	Texas Inst.
R305	+1% 1/8 W RESISTOR, FIXED CARBON FILM: 619 ohms +1% 1/8W	CG1/8	Texas Inst.

R306	RESISTOR, FIXED COMPOSITION: 3900 ohms ±5%, 1/2 W	EB 3925	AB
R307	Same as R204		
R308	RESISTOR, FIXED COMPOSITION: 620 ohms ± 5%, 1/2 W	EB 6215	AB
R309	Same as R308		
R310	RESISTOR, FIXED CARBON FILM: 68.1 ohms +1%	CG1/8	Texas Inst.
T301	TRANSFORMER, AUDIO	1170	CEI
4. LOV	V BAND TUNER, 30-60 MC.		
C401	CAPACITOR, DIPPED MICA: 15 pf ± 5%	DM10-150J	Arco
C402	CAPACITOR, VARIABLE TRIMMER: 0.7-9.0 pf	VC1G	JFD
C403	CAPACITOR, DIPPED MICA: 500 pf ± 10%	DM-15-501K	Arco
C404	CAPACITOR, CERAMIC DISC: 0.001 uf + 20%	40C214A	Sprague
. C 405	Same as C404		
C406	Same as C404		
C407	CAPACITOR, DIPPED MICA: 270 pf ± 5%	DM-10-271J	Arco
C408	CAPACITOR, DIPPED MICA: 18 pf ± 5%	DM-10-180J	Arco
C409	Same as C402		
C 410	CAPACITOR, CERAMIC TUBULAR: 2.2 pf ± 0.25 pf	NPOA	Erie
C411	Same as C402		
C412	CAPACITOR, DIPPED MICA: 12 pf ± 5%	DM-10-120J	Arco
C413	CAPACITOR, DIPPED MICA: 47 pf ± 5%	DM-10-470J	Arco
C414	Same as C404		
C415	CAPACITOR, CERAMIC BUTTONHEAD: 0.001 uf, GMV	SS5A-102W	AB
C416	CAPACITOR, DIPPED MICA: 360 pf \pm 5%	DM-15-361J	Arco
C417	Same as C404		
C418	Same as C404		
C419	CAPACITOR, CERAMIC TUBULAR: 1.5 pf ± .25 pf	NPOA	Erie

TEE

C420	Same as C402		
C421	CAPACITOR, DIPPED MICA: 10 pf \pm 5%	DM - 10 - 100J	Arco
C422	CAPACITOR, DIPPED MICA: 22 pf \pm 5%	DM - 10 - 220J	Arco
C423	CAPACITOR, CERAMIC TUBULAR: 0.68 pf +0.1 pf	NPOA	Erie
C424	Same as C404		
C425	Same as C415		
C426	Same as C404		
C427	Same as C404		
C428	Same as C404		
C429	Same as C404		
C430	CAPACITOR, CERAMIC DISC FEEDTHRU: 1000 pf, GMV	Type FA5C-102	W AB
C431	Same as C430		
C432	Same as C430		
C433	Same as C430		
C434	Same as C404		
C435	Same as C422		
J401	Same as J107A		
J402	RECEPTACLE, JACK	31-50	Microdot
J403	Same as J402		
L401	COIL: 0.2 uh	1131-06	CEI
L402A L402B L402C L402D	TUNER: Four-section inductuner	2026	CEI
L403	Same as L401		
L404	Same as L401		
L405	COIL, ADJUSTABLE: 2.2-4.3 uh	1111-08	CEI
L406	COIL: 0.24 uh	1131-07	CEI

- IL

E L

L 407	COIL: 1.3 uh	1131-08	CEI
L408	Not used		
L409	NOT USED		
L410	COIL: 3.3 uh	W33G	Wilco
L411	Not used		
L412	COIL: 2.7 uh	1114	CEI
P401	Same as P102		
P402	PLUG, CABLE	32-21	Microdot
P403	Same as P402		
R401	RESISTOR, FIXED COMPOSITION: 100K ohms \pm 10%, 1/2 W	EB 1041	AB
R402	RESISTOR, FIXED COMPOSITION: 47K ohms ± 5%, 1/4 W	CB 4735	AB
R403	RESISTOR, FIXED COMPOSITION: 56 ohms \pm 5%, 1/4 W	CB 5605	AB
R404	RESISTOR, FIXED COMPOSITION: 270K ohms ± 10%, 1/4W	CB 2741	AB
R405	RESISTOR, FIXED COMPOSITION: 10 ohms ± 10%, 1/4 W	CB 1001	AB
R406	Same as R 402		
R407	RESISTOR, FIXED COMPOSITION: 6800 ohms ± 5%, 1 W	GB 6825	AB
R408	RESISTOR, FIXED COMPOSITION: 4.7K ohms	EB 4725	AB
R409	$\frac{+5\% 1/2 W}{\text{RESISTOR, FIXED COMPOSITION: 470K ohms } \pm 10\%, 1/4 W}$	CB 4741	AB
R410	Same as R 409		
R411	RESISTOR, FIXED COMPOSITION: 220K ohms ± 5%, 1/2 W	EB 2245	AB
R412	RESISTOR, FIXED COMPOSITION: 2700 ohms ± 5%, 1/2 W	EB 2725	AB
R413	RESISTOR, FIXED COMPOSITION: 33K ohms ± 5%, 1/2 W	EB 3335	AB
R414	Same as R402		
R415	RESISTOR, FIXED COMPOSITION: 10K ohms ± 5%, 1/2 W	EB 1035	AB
R416	Same as R415		
R417	Same as R404		
R418	RESISTOR, FIXED, COMPOSITION: 22K 1/2W 5%	EB2235	AB
R419	RESISTOR, FIXED, COMPOSITION: 1K 1/2W 5%	EB1025	AB
R420	Same as R419		

T401	TRANSFORMER	1134	CEI
TP 40 1	TEST POINT	TI-6	Taurus
V 40 1	TUBE, ELECTRON: Nuvistor Triode	6CW4	RCA
V402	Same as V401		
V403	TUBE, ELECTRON: Nuvistor Tetrode	7587	RCA
V404	Same as V401		
- 117/	TH PAND TIMEP 60,200 MC		
5. HIC	GH BAND TUNER, 60-300 MC.		
C501	CAPACITOR, CERAMIC TUBULAR: 5.6 pf \pm 0.25 pf	NPOA	Erie
C502	CAPACITOR, CERAMIC TUBULAR: 6.0 pf ± 0.25 pf	NPOA	Erie
C 503	CAPACITOR, CERAMIC TUBULAR: 47 pf \pm 5%	NPO-T	Erie
C504	CAPACITOR, VARIABLE TRIMMER: 0.8-4.5 pf	VC-21G	JFD
C505	Same as C421		
C506	Same as C404		
C507	CAPACITOR, CERAMIC TUBULAR: 3.3 pf ± 0.25 pf	NPOA	Erie
C508	Same as C403		
C509	Same as C415		
C510	CAPACITOR, CERAMIC TUBULAR: $0.5 \text{ pf} \pm 0.1 \text{ pf}$	NPOA	Erie
C511	CAPACITOR, CERAMIC TUBULAR: 1.0 pf ± 0.1 pf	NPOA	Erie
C512	Same as C402		
C513	CAPACITOR, CERAMIC TUBULAR: 2.0 pf \pm 0.1 pf	NPOA	Erie
C514	Same as C513		
C515	Same as C402		
C516	Same as C402		
C517	CAPACITOR, CERAMIC TUBULAR: 5.0 pf \pm 0.25 pf	NPOA	Erie
C518	Same as C404		
C519	Same as C404		

-

1

- C520 Same as C510
- C521 Same as C404
- C522 Same as C415
- C523 Same as C404
- C524CAPACITOR, CERAMIC TUBULAR: 3.3 pf ± 0.5 pfN750AErieTemperature compensated capacitorC525CAPACITOR, CERAMIC TUBULAR: 3.3 pf ± 0.5 pfN470AErie
- C526 Temperature compensated capacitor Same as C507
- C527 Same as C511
- C528 Not used

Station Server

- C529 Same as C415
- C530 Same as C404
- C531 Same as C404
- C532 Same as C415
- C533 Same as C402
- C534 Same as C430
- C535 Same as C430
- C536 Same as C430
- C537 Same as C430
- C538 Same as C430
- C539 Same as C404
- C540 Same as C404
- J501 Same as J107A
- J502 Same as J402

L501	INDUCTO	DR, PADDING	1108	CEI
L502A, B,C,D	TUNER:	Four-Section VHF Inductuner	2027	CEI
L503	CHOKE:	0.125 uh	1129-01	CEI

_	L504	CHOKE: 1.0 uh	W 10G	Wilco
	L505	CHOKE: 0.41 uh	1131-01	CEI
	L506	INDUCTOR, PADDING	1234	CEI
	L507	CHOKE	1129-02	CEI
	L508	CHOKE: 1.62 uh	1,131 -02	CEI
	L509	INDUCTOR, PADDING	1235	CEI
	L510	CHOKE: 1.39 uh	1131-03	CEI
	L511	INDUCTOR, PADDING	1107	CEI
	L512	INDUCTOR, PADDING	1106-01	CEI
	L513	CHOKE: 2.2 uh	W22G	Wilco
	L514	CHOKE: 3.4 uh	1131-04	CEI
	L515	Same as L514		
	L516	CHOKE: 5.4 uh	113105	CEI
	L517	CHOKE: 1.8 uh	208-11-18	Wilco
	L518	INDUCTOR, PADDING	1200-1	CEI
	P501	Same as P102	,	
	P502	Same as P402		
	R501	Same as R401		
	R502	Same as R402		
	R503	RESISTOR, FIXED COMPOSITION: 47K ohms ± 5%, 1/2 W	EB 4735	AB
	R504	Same as R308		
	R505	Same as R308		
	R506	RESISTOR, FIXED COMPOSITION: 100 ohms \pm 5%, 1/2 W	EB 1015	AB
	R507	Same as R415		
	R5 08	Same as R506		
	R 509	Same as R409		

j

1

から

R510	Same as R 409	× 1.1	
R511	Same as R411		
R512	RESISTOR, FIXED COMPOSITION: 15K ohms ± 5%, 1 W	GB 1535	AB
R513	Same as R 402		
R514	RESISTOR, FIXED COMPOSITION: 1000 ohms ± 5%, 1/2 W	EB 1025	AB
R515	Same as R514		
TP501	Same as TP401		
V501	TUBE, ELECTRON: Ceramic Triode	7077	GE
V 502	Same as V501		
V503	Same as V403		-
V 504	Same as V401		
6. IF 5	STRIP.		
C601	CAPACITOR, CERAMIC DISC: .001 uf, 500 wvdc ± 20%	20C114A2	Sprague
C602	Same as C430	200111112	opragae
C603	Same as C201		
C604	Same as C430		
C605	Same as C601		
C606		DM 10 - 1211	Arco
	CAPACITOR, DIPPED MICA: 120 pf, 500 wvdc $\pm 5\%$	DM 10 - 121J	ALCO
C607,	Same as C601		
C608	Same as C415		
C609	Same as C415		
C610	Same as C430		
C611	Same as C202		
C612	Same as C606		
C613	CAPACITOR, DIPPED MICA: 100 pf \pm 5%, 500 wvdc	DM 10 - 10 1J	Arco
C614	CAPACITOR, VARIABLE: 1-28 pf	MC-603	JFD

4

5

力力

C615	Same as C501		
C616	Same as C614		
C617	CAPACITOR, DIPPED MICA: 91 pf ± 5%, 500 wvdc	DM10-910J	Arco
C618	Same as C606		
C619	Same as C430		
C620	Same as C202		
C621	Not used		
C622	CAPACITOR, CERAMIC DISC: .0047 uf \pm 20%, 1000 wvdc	29C203A	Sprague
C623	Same as C430		
C624	CAPACITOR, CERAMIC DISC: 470 pf \pm 20%, 1000 wvdc	40C209A	Sprague
C625	Same as C601		c.
C626	Same as C624		
C627	Same as C401		
C628	CAPACITOR, CERAMIC TUBULAR: 0.75 pf + 10%	MC 0.75	Quality Comp.
C629	CAPACITOR, DIPPED MICA: 33 pf ± 5%, 500 wvdc	DM 10 - 330J	Arco
C630	Same as C613	3	
C631	Same as C430		
C632	Same as C430		
C633	Same as C624		
C634	Same as C624		
C635	Same as C624		
C636	CAPACITOR, CERAMIC TUBULAR: 4.7 pf ± 0.25 pf	NPOA	Erie
C637	Same as C629		
C638	Same as C415		
C639	Same as C430		
C640	Same as C430		

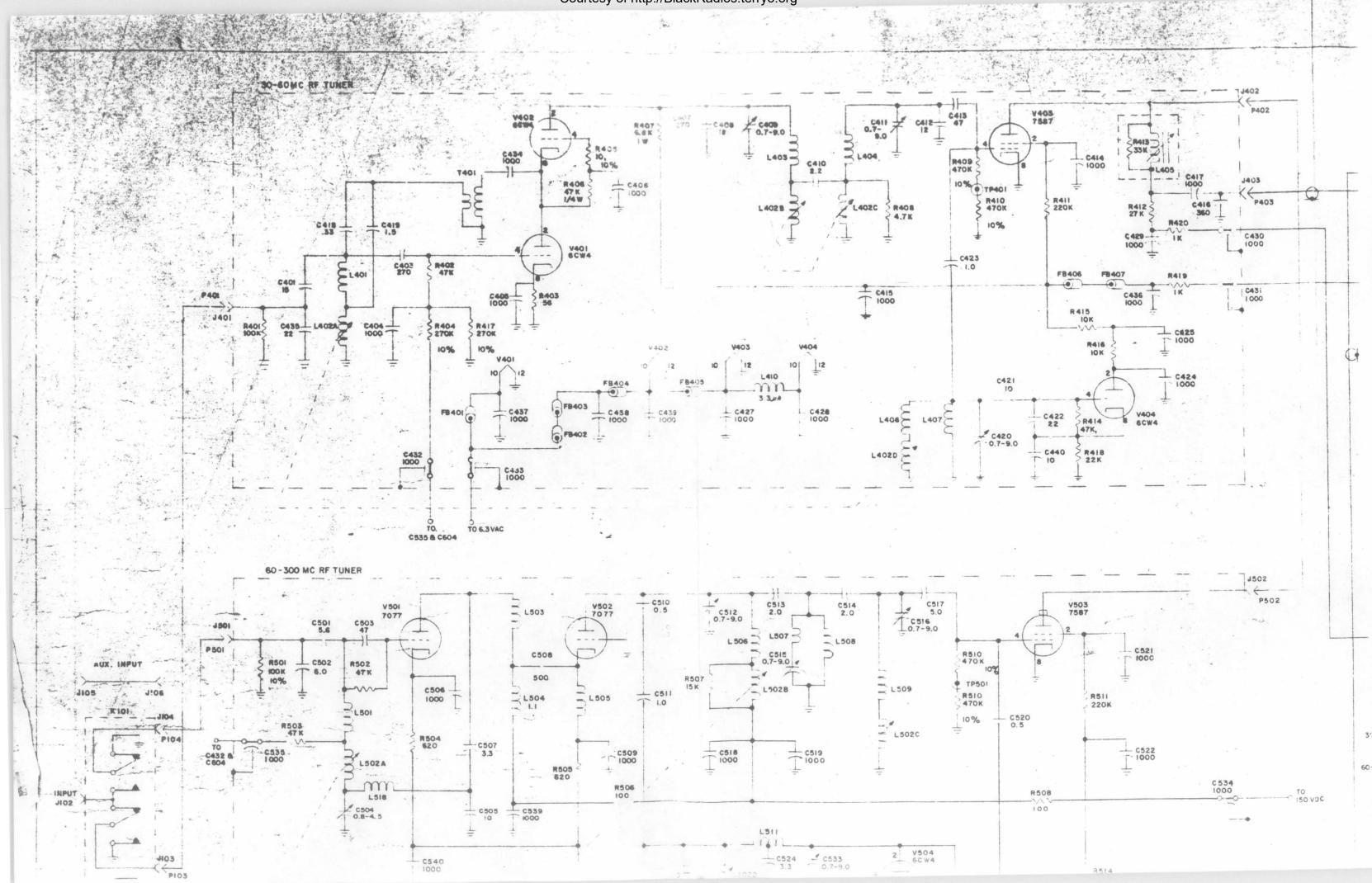
T

THE STREET

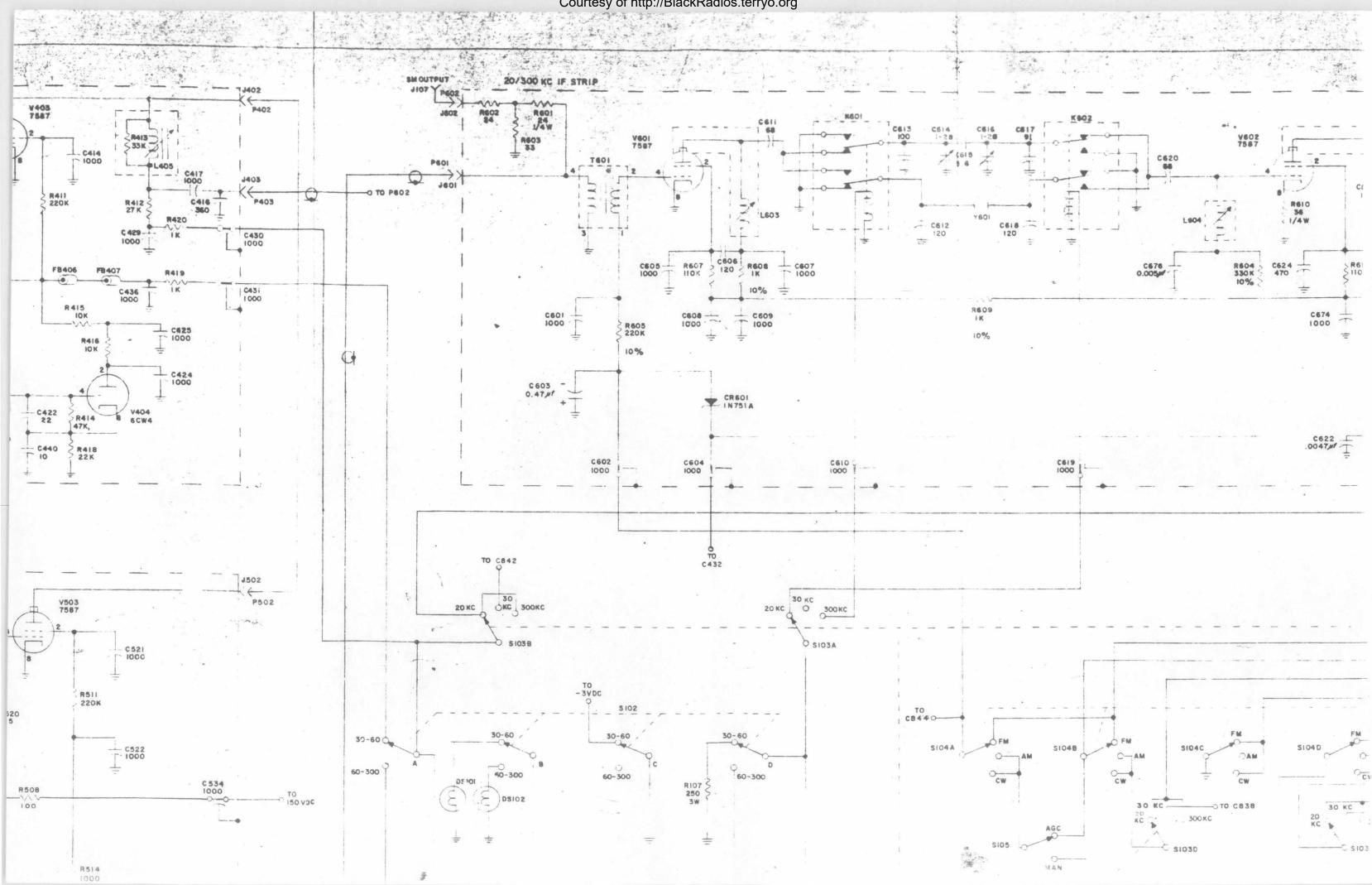
Harris -

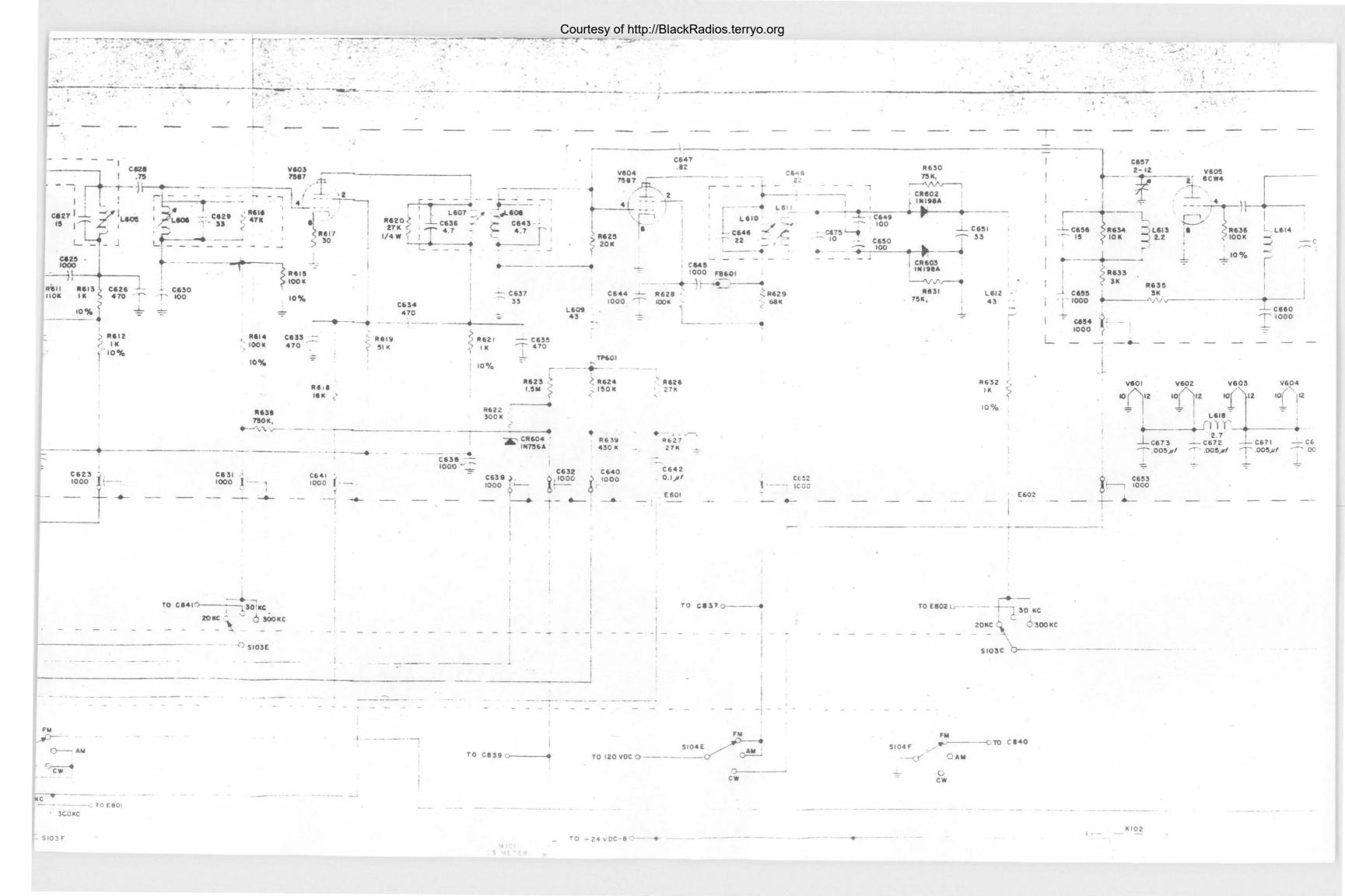
1

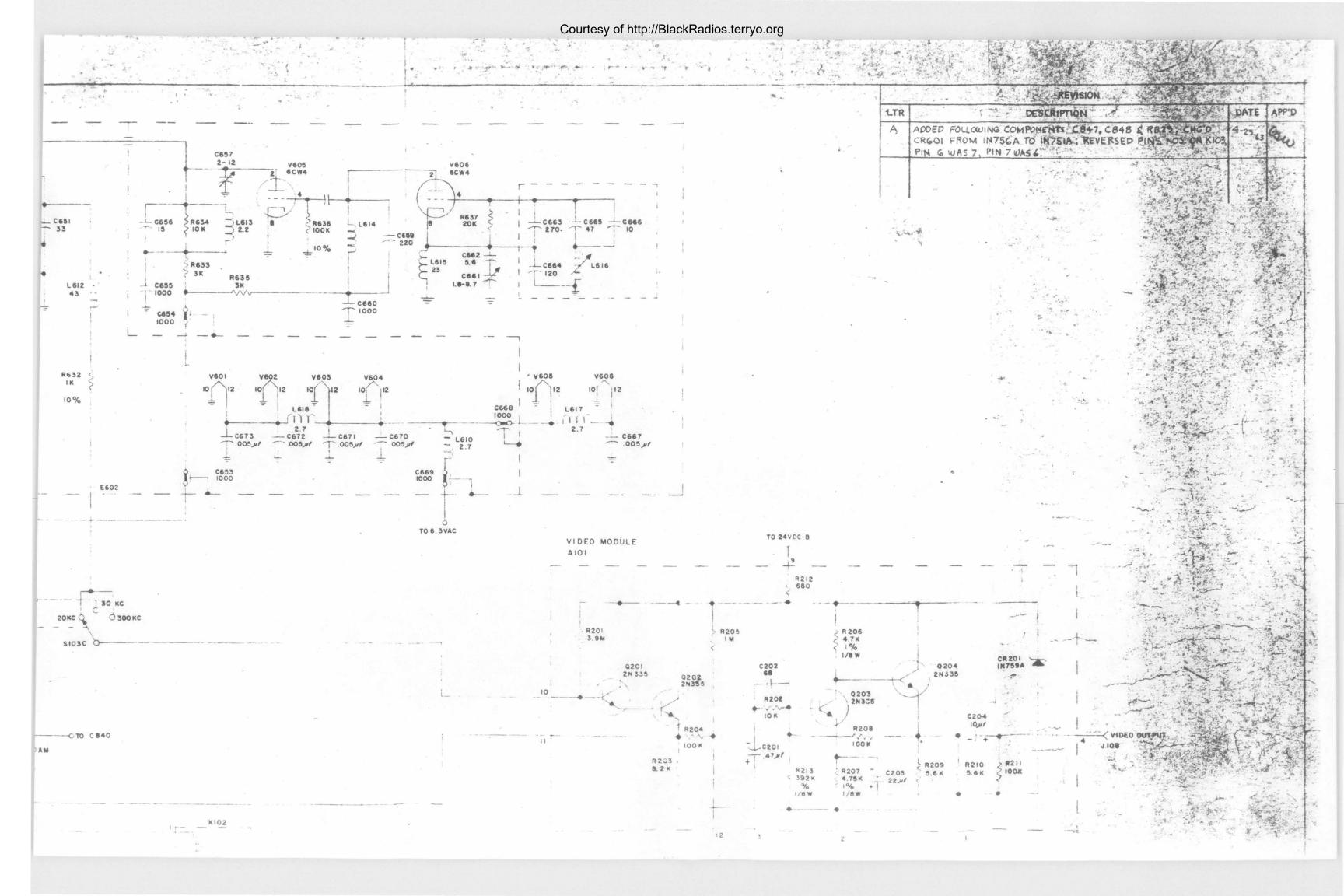
	C641	Same as C430			
	C642	CAPACITOR, CERAMIC DISC: 0.1 uf + 80% - 20%,	50 wvdc	33C41	Sprague
	C643	Same as C636			
	C644	Same as C601			
	C645	Same as C601			
	C646	CAPACITOR, CERAMIC TUBULAR: 22pf ± 5%,		N150A	Erie
	C647	Temperature compensated CAPACITOR, CERAMIC TUBULAR: 0.82 pf ± 10%		MC 0.82	Quality Comp.
	C648	Same as C422			
	C649	Same as C613			
	C650	Same as C613	· .		
	C651	Same as C629			*
	C652	Same as C430	•		
	C653	Same as C430			
	C654	Same as C430			
	C655	Same as C415			
•	C656	Same as C 401			
	C657	CAPACITOR, VARIABLE TRIMMER: 2-12 pf		CST-50	СТС
	C658	Same as C421			
	C659	CAPACITOR, DIPPED MICA: 220 pf + 5%, 500 wvdc		DM 10 - 22 1 J	Arco
	C660	Same as C415			
	C661	CAPACITOR, VARIABLE TRIMMER: 1.8-8.7 pf, 98	M11	160-104	E. F. Johnson
	C662	Same as C501			
	C663	Same as C407			
	.C664	Same as C606			
	C665	Same as C413			
	C666	CAPACITOR, CERAMIC TUBULAR: 10 pf ± 0.5 pf		N750A	Erie
		Temp. Comp.	Cap.		

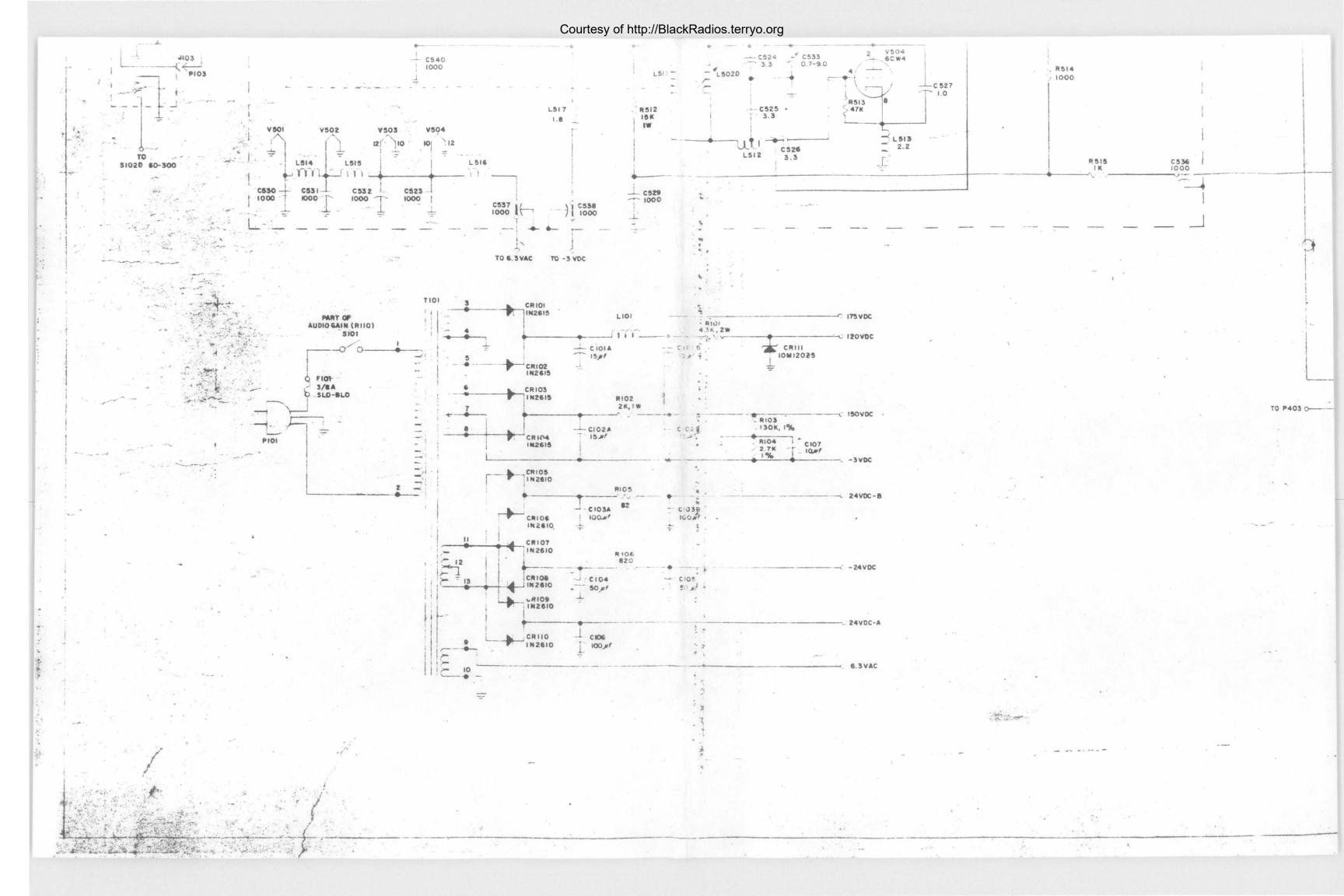

R

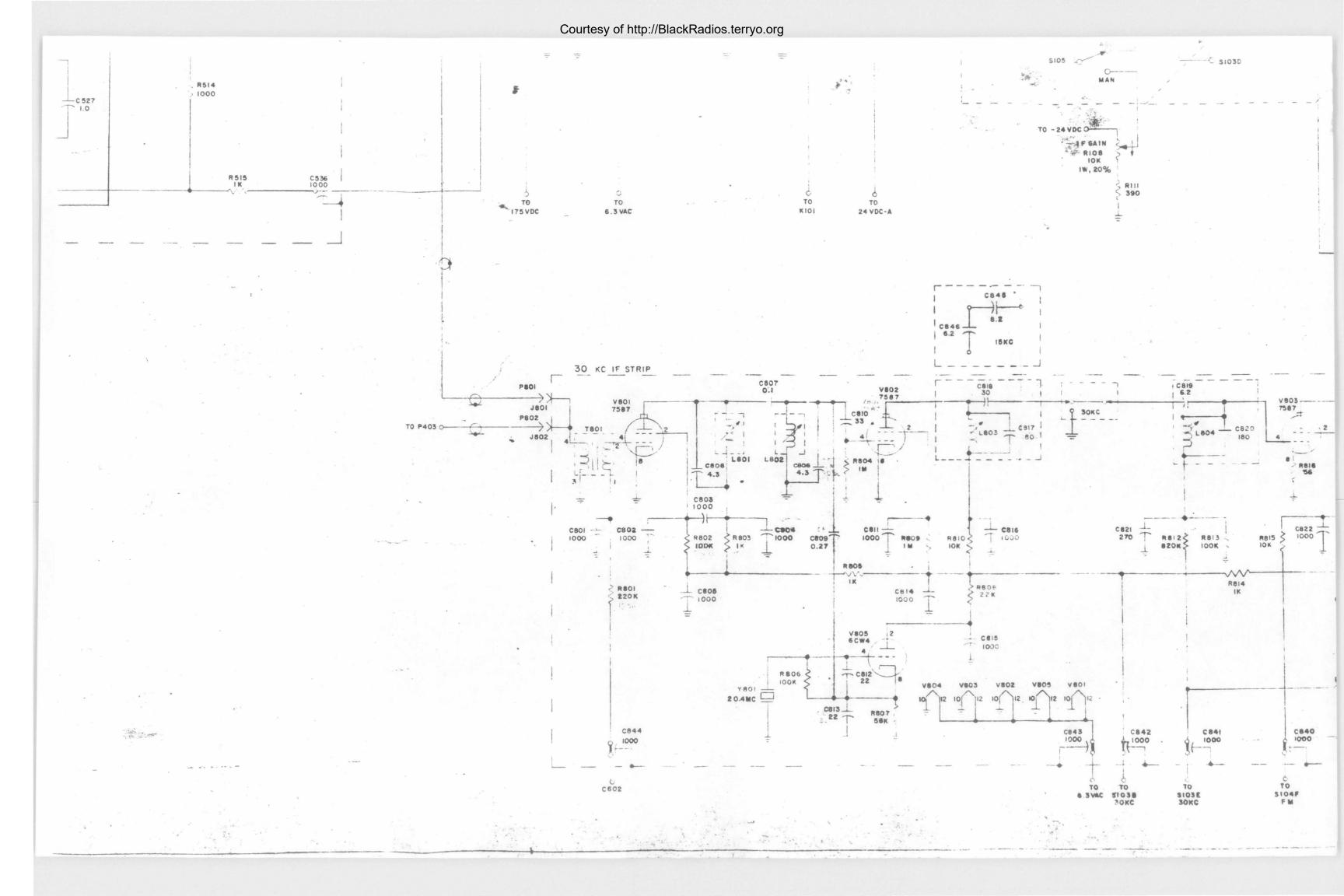

C667	CAPACITOR, CERAMIC DISC: 0.005 uf + 20%, 50 wvdc	TGD50	Sprague
C668	Same as C430		
C669	Same as C430		
C67 0	Same as C667		
C671	Same as C667		
C672	Same as C667		
C673	Same as C667		
C674	Same as C415		
C675	Same as C666		
C676	Same as C667		
C677	Same as C667		
CR601	DIODE, SILICON ZENER	1N756A	P.S.I.
CR602	DIODE, GERMANIUM	1N198A	Sylvania
CR 603	Same as CR602		
CR604 E601 E602 J601 J602	Same as CR601 FEEDTHRU, TERMINAL Same as E601 Same as J402 Same as J402	SFU-16	Taurus
K601	RELAY: DPDT	MS24250-6	Elgin
K602	Same as K601		
L601 L602	Part of T601, not separately replaceable	1126	CEI
L603	COIL, VARIABLE	1111-04	CEI
L604	COIL, VARIABLE	1111-05	CEI
L605	COIL, VARIABLE	1111-06	
L606	Coil, VARIABLE	1111-03	CEI
L607	COIL, VARIABLE	1111-01	CEI
L608	COIL, VARIABLE	1111-07	CEI
L609	COIL, FIXED: 43 uh	1115	CEI

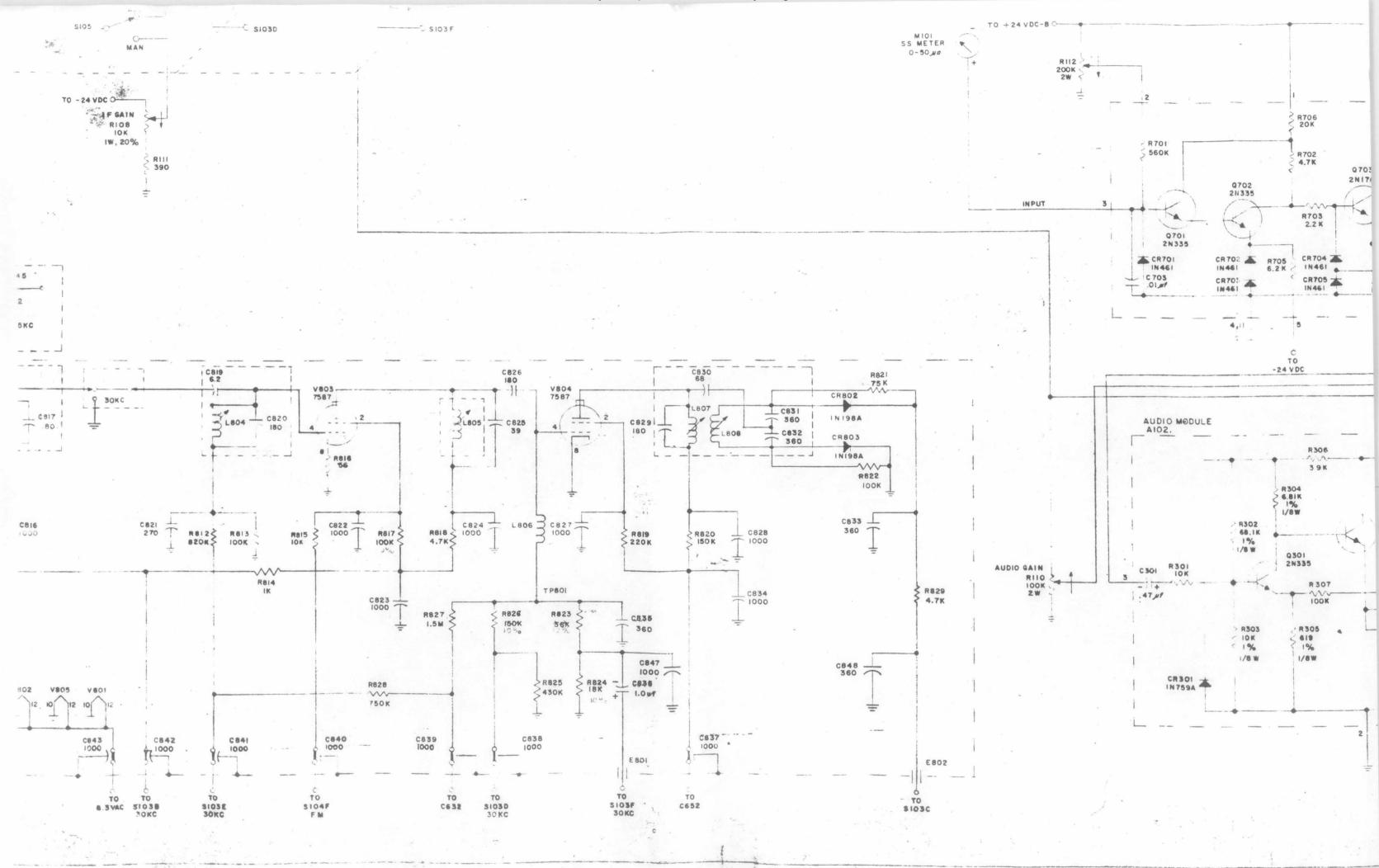

LIST OF MANUFACTURERS

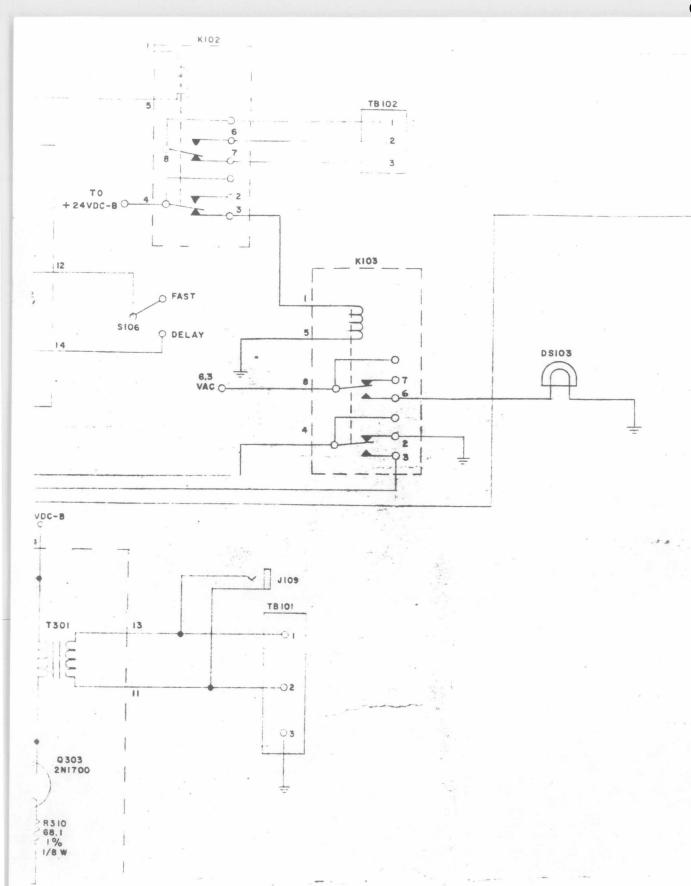

Abbreviation	Name and Address
RF Products	RF Products 33 East Franklin Street Danbury, Connecticut
RCA	Radio Corporation of America Electron Tube Division 415 S. Fifth Street Harrison, New Jersey
Sage	Sage Electronics Corp. Country Club Road East Rochester, New York
Sealectro	Sealectro Corporation 610 Fayette Avenue Mamaroneck, New York
Sprague	Sprague Electric Company 91 Marshall Street North Adams, Mass.
Switchcraft	Switchcraft, Inc. 5555 North Elston Avenue Chicago, Illinois
Sylvania	Sylvania Electric Products, Inc. 1740 Broadway New York, New York
Texas Inst.	Texas Instrument, Inc. 6000 Lemmon Avenue Dallas, Texas
Wilco	Wilco Corporation 546 Drover Street Indianapolis, Indiana


Abbreviation	Name and Address
RCA	Radio Corporation of America Electron Tube Division 415 South Fifth Street Harrison, New Jersey
	Mailison, New Jeisey
RF Products	RF Products 33 East Franklin Street Danbury, Connecticut
Sage	Sage Electronics Corp. Country Club Road East Rochester, New York
Sealectro	Sealectro Corporation 610 Fayette Avenue Mamaroneck, New York
Sprague	Sprague Electric Company 91 Marshall Street North Adams, Mass.
Switchcraft	Switchcraft, Inc. 5555 North Elston Avenue Chicago, Illinois
Sylvania	Sylvania Electric Products, Inc. 1740 Broadway New York, New York
Texas Inst.	Texas Instrument, Inc. 6000 Lemmon Avenue Dallas, Texas
Wilco	Wilco Corporation 546 Drover Street Indianapolis, Indiana







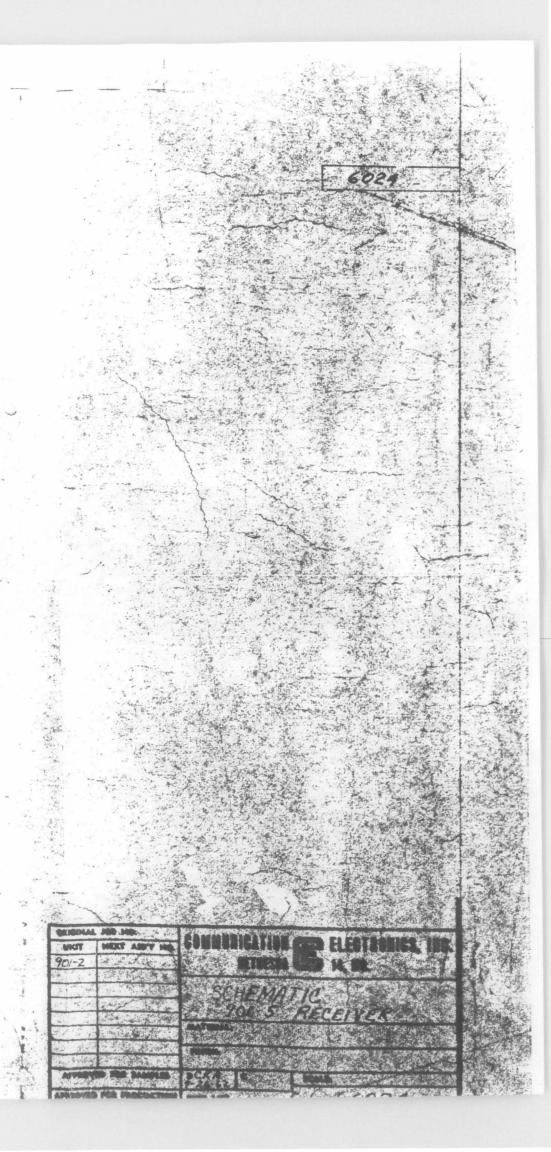


T0 -24 VDC

VIDEO GAIN R109 OK 2 W

MIO2 TUNING METER

00-0-100,00


NOTES:

- UNLESS OTHERWISE SPECIFIED:

 RESISTORS ARE MEASURED IN OHMS, 1/4W, 25%.
 CAPACITORS ARE MEASURED IN JWJ.
 CAPACITORS ARE MEASURED IN JWJ.

 ARROWS ON POTENTIOMETERS INDICATE CLOCKWISE ROTATION.
 INDUCTANCE IS MEASURED IN JWA.
 RELAYS KIOI, KIO2, AND K602, ARE SHOWN IN A NON-ENERGIZED STATE.
 RELAYS KIO3 AND KGOI ARE SHOWN IN AN ENERGIZED STATE.

- IN AN ENERGIZED STATE.

